
November 1989 $2.50
Volume 2, Number 2

Technical UNIXK/ser Group

newsletter of the

Technical UNIX®
User Group
This month...

The President's Corner
An Improved Interface Model for the LP
Solving Those Puzzling Quirks of UNIX Systems Use
TUUG Financial Statement
Minutes from Oct 10 Meeting
Agenda for Nov 14 Meeting

(T " " ^
Late Breaking News...

Next Meeting to be held at UNISYS
See inside for details

UNIX is a registered trademark of AT&T.

Thoughts From The Editor
By Susan Zuk

It's hard to believe that we have started a new volume of the
newsletter. The past year has passed so quickly!

For those that don't know me, my name is Susan Zuk, and I am
with the company, UNISYS. Last year I was secretary but I
have relinquished that role to Matt Binnie. I am very thankful
to last year's editor, Darren Basler, for the great job he did in
designing and putting the newsletter together. It has saved me
a tremendous amount of time being able to use his ground
work. If you have any ideas or articles for the newsletter just
give me a call. My phone number is listed below.

One reason for UNIX becoming so popular is its versatility.
Developers wrote it to have the ability to perform things
quickly and with the least amount of typing, as you can see
from the short command names like Is for list and cp for copy.

The November Newsletter contains a couple of very interest
ing articles. Gilles Detillieux's discussion on printer spooling
will give you some hints on how to customize the way print
jobs are sent to your printer and also will help to start you

creating your own spooler interface files for that special
printer you want to use. Gilles also included a sample file
which he uses to explain the spooling procedure.

The second article comes to us from /usr/group's CommU-
NlXations Magazine. This article, on Bourne shell functions,
provides ideas for creating either your own shell commands or
adding your favorite options to a current command such as Is.

If you have performed some customization work on your own
computer, write it up and let us share it with the rest of the
group.

In the final portion of the Newsletter, we have listed our
Financial Statement for the past season. We are ending the
year in the black. Maybe we should give the government
some tips!

Anyway, I shall say bye for now and let you enjoy this month's
TUUG Newsletter.

Group Information Copyright Policy and Disclaimer

The Technical Unix User Group meets at 7:30 pm the second
Tuesday of every month, except July and August. The newslet
ter is mailed to all paid up members 1 weekpriortothemeeting.
Membership dues are $20 annually and are due at the October
meeting. Membership dues are accepted by mail and dues for
new members will be pro-rated accordingly.

The Executive

President:
Vice President:
Treasurer:
Secretary:
Newsletter Editor:
Membership Sec:
Information:

Gilbert Detillieux 261-9146
Derek Hay 943-5401
Gilles Detillieux 261-9146
Matt Binnie (W) 949-0190
Susan Zuk (W) 788-7312
PatMacdonald (W) 474-9870
Gilbert Detillieux 261-9146

(or) Susan Zuk (W) 788-7312

Technical UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

This newsletter is ©opyrighted by the Technical UNIX User
Group. Articles may be reprinted without permission as long as
the original author and the Technical UNIX User Group are
given credit.

The Technical UNIX User Group, the editor, and contributors
of this newsletter do not assume any liability for any damages
that may occur as a result of information published in this
newsletter.

(T %

ANNOUNCEMENT...

Meeting Location Change:
The November meeting location will be provided by
UNISYS Canada Inc., Suite 300-1661 Portage Ave
(UNISYS Building). Upon entering the building you
will then be required to sign-in. Please sign-in using
"TUUG" as the agency represented.

v j

President's Corner
by Gilbert Detillieux, President

As I'm sitting down to write this, on October 17, the big news
story is the earthquake that just rocked San Francisco. Rather
appropriate, since I feel like I'm in the middle of one as I rush
to get things done in time. The newsletter deadline has been
moved up, since I will be out of town for a couple weeks
starting on October 25th. In addition to rushing to finish this
article, I've had to write a program for our new editor, Susan,
to help prepare text files containing articles submitted for
inclusion in the newsletter, and also handle our company's
year end finances, and start work on a new job. You'll have to
excuse me if this article seems a little schizophrenic.

In case you missed the last meeting, you may be interested to
know that the new executive was elected by acclamation. The
list of candidates shown in my column last month now makes
up the executive for the 1989-1990 year, ending next Septem
ber. I would like to take this opportunity to welcome the two
new members of the executive, Derek Hay (Vice-President)
and Matt Binnie (Secretary), and also thank them for volun
teering some of their time to help out the group. I would also
like to thank our out-going editor, Darren Besler, for all the
time and effort he put into the newsletter over the past year.
We'll miss you, Darren!

The executive will have had its first meeting by the time you
read this, and hopefully will have lots of things planned for the
upcoming months. The December meeting will likely be a small
pre-Christmas party, similar to last year. We also have a lot of
ideas for topics and speakers for meetings in the following
months; we'll let you know as soon as we can confirm some of
these. Also, if you have any ideas or wish-lists for topics and/or
speakers, please bring them to the attention of any member of
the executive.

It looks like the November 14th meeting will be held at Unisys
again. The presented topic, after the business meeting, will be
a surprise. In other words, even I don' t know what the topic will
be yet - one possibility is a presentation on DOS/UNIX inter
facing. Look for updates elsewhere in the newsletter.

Well, this is about all I have time for, boys and girls (Sorry,
Susan, looks like you'll need some filler), 'cause I've got lots of
work left to do. So I'll see you all at the next meeting, or talk to
you in the next newsletter. Bye for now, and watch out for those
little ghosts and goblins!

The fortune file
This month's fortune comes courtesy of Gilbert Detillieux, who found it on a DOS program called MURPHY.

Harrison's Postulate:

" For every action, there is an equal and opposite critisism.

The 1989-1990 Executive
President:
Vice President:
Treasurer:
Newsletter Editor:

Gilbert Detillieux, InfoWest
Derek Hay, FACS Records Center
Gilles Detillieux, InfoWest
Susan Zuk, UNISYS

Membership Secretary: Pat Mcdonald, University of Manitoba
Secretary: Matt Binnie, PRIME
Meeting Coordinator: Matt Binnie, PRIME

3

An Improved Interface Model for the LP
by Gilbert Detilliewc, Info West Inc.

The LP spooler, that comes with most UNIX systems today, is
a big improvement over early UNIX spoolers, such as LPR.
In addition to supporting multiple printers, and providing more
control over spool queues than earlier spoolers, LP is a big
improvement because it can readily be configured to support
different types of printers. This configurability is provided by
allowing you to select one of several printer * 'interface'' pro
grams, or by defining your own.These programs are simply
shell scripts, which can easily be customized.

In addition to allowing you to support different types of print
ers, these interface programs also allow you to add your own
local options to the LP spooler, to control the operation of the
printer. This capability is a powerful way of enhancing the
versatility of the spooler. In fact, many of the limitations of LP,
that often frustrate novice users (such as the banner page
always being printed, and blank pages between pre-paginated
files), are not inherent limitations in LP, but simply due to
inadequate interface programs.

This article presents a model for a more flexible LP interface
that provides local options to suppress the banner page, sup
press form feeds after each file printed, and to control printing
of raster graphics. This interface is for an HP PCL printer,
such as the LaserJet, but is general enough to be used with any
type of line printer. In fact, the only printer specific compo
nent is a separate filter program to convert a raster graphic
image file into PCL raster graphics commands. This filter,
which is also specific to a particular graphic file format, is be
yond the scope of this article, and is therefore not listed. The
interface program itself, a shell script, is presented in Listing 1.

How It's Used.

In its default mode of operation, it works just like the standard
LP interfaces. It starts by printing a banner page, containing
the user's login name and an optional title in large type. It then
prints the text of each file, with a form feed after each, and
repeats this for the requested number of copies. This behavior
can be altered by specifying local options to LP.

If the "nb" (no banner) or "nh" (no header) option is specified,
for example:

lp -onb sample.txt

the banner page will be suppressed. This may be desirable
especially when printing on expensive paper or pre-printed
forms.

If the text to be printed is already paginated, such as the output
of the' 'pr'' command, the' 'nf * (no form feed) option can be
used to suppress the form feed that is normally done after each
file:

pr sample.txt I lp -onb -onf

Other options are provided to indicate how files are to be
processed, allowing for printing of graphics in addition to text.
By default, or if the' 'text'' option is explicitly specified, each
file argument is treated as a normal UNIX text file to be
printed. This means that the files' contents are sent to the
printer as is, except that newlines are translated to CR/LF se
quences on output. (For a PostScript printer interface, a filter
program would be needed to translate lines of text to the Post
Script commands to print that text)

If the "raw" option is specified, each file is sent to the printer in
raw mode, i.e. without any post-processing. The files would
likely be binary files containing printer-ready data. This could
be downloadable fonts, setup commands, formated text orgra-
phics, for example.

If the "graph" option is specified, each file is assumed to
contain araster graphic image, and is passed to a filter program
to convert the graphic to the format required by the printer. If
there are several different graphic file types to be handled,
different options could be interpreted by the interface, and
passed on to the appropriate filter program, or the filter pro
gram could be designed to automatically recognize the differ
ent formats. The interface in this example also recognizes
options to set the rotation, resolution, and inversion of the
graphic, and pass them on to the filter. Other such options
could be added, as appropriate.

This interface could also be easily enhanced to support other
types of files, such as HPGL plot files, for example. An
*' hpgl'' option could be recognized to handle such files. For an
interface to an HPGL compatible plotter, this would be treated
like the * 'raw'' option. For other types of printers and plotters,
an appropriate filter could be called to convert the HPGL
code to graphic commands for that device.

How It Works

The interface program, once installed for a particular LP
printer, is called by • 'lpsched'' for each print request to that
printer, with all required information and options passed as
arguments. The interface first sets up a reasonable set of de-

4

faults, then scans its fifth argument, the option list. Eachspeci- the output port is set up to disable outputpost-processing.
fied option is processed in turn, and causes certain variables to Each file is then handled in turn, for the requested number of
be set to values that will alter the default behaviour. If an copies. Files will be processed according to any printing mode
unrecognized option is encountered, the interface program options (such as "graph" or "raw") given, and the appropriate
ignores the entire print request, and mails an error message to filter program will be called to convert the file, or the * 'cat''
the issuing user. command will be used if no conversion is needed. Form feeds

will be printed after eachfile, unlessan "nf" option was given.
Once all options have been handled, the program sets up the
output port as appropriate for printing text files. Next, it goes By adding new options to this model, and adding the appropri-
on to print the banner page, if one is desired (i.e. no' W ' or ate filter programs, the interface could be adapted to handle
4 'nh* * option was given). This banner page is generated in the any type of printer you use, and any type of files you want
same way as for the standard LP interfaces. printed. Naturally, it could take a fair bit of programming to

develop the required filters, but it's nice to have that sort of
Next, if binary data (as opposed to text files) are to be printed, power and flexibility in a system, in case you need it.

*

•Listing 1: Example of an LP interface for an HP PCL printer

#! /bin/sh
hppcl - lp interface for HP PCL printers, eg. LaserJet.

(c) 1988, 1989, INFO WEST Inc. All rights reserved.

called with args: printername req-id username title #copies options file ...
for parameters: $0 $1 $2 $3 $4 $5 $6 ...
options are:

nh or nb- no header (banner) page is generated
- no form feed sent between files, or at end
- treat files as UNIX text files with newlines (default)
- print files in raw mode (8 bits, no opost)

(could be printer-ready graphics, fonts, or text)
- treat files as raster graphics to be printed
- print raster graphics with given rotation

(rounded to nearest multiple of 90)
- print raster graphics at given resolution
- if x is non-zero, invert bits for printing,

otherwise, treat 0 as black
Set up default parameters, for printing text files:
devmode='9600 cs8 -parenb ixon -ixoff istrip icanon -hupcl opost onlcr -tabs'
prmode=text # default printing mode
banner=yes # generate banner page
formfeed='\014' # formfeed string to be echo'ed

Setup for optional graphics filter program:
rasfilter=/usr/lib/hppclras # filter to print raster graphics
rot=-90 # default raster orientation
res=150 # default raster resolution
inv=l # default inversion parameter (treat 0's as white)

Scan options argument:
for option in $5
do

case '^option" in
nhlnb) banner=no; continue ;; # no banner page
nf) formfeed= ; continue ;; # no formfeed
textlraw) # set printing mode

prmode=$option; continue ;;
graph*) # set graphics mode, if possible

if [-x Srasfilter] # i.e. if program exists
then

prmode=$option; continue
fi;;

rot=*lres=*linv=*) # set graphics option
eval Soption; continue ;;

esac
if we reach here, invalid option encountered
so ignore request, and mail error message to user
prname=Nbasename $0*
mail $2 «MAILMSG

5

nh or nb-
nf
text
raw

graphics]
rot=deg

res=dpi
inv=x

Request id: $1 Printer: Sprname
Title: $3 Copies: $4
Options: $5
This printer interface was called with invalid/unsupported option: Soption
Print request ignored.
MAILMSG

exit 0
done

Set printer port mode as appropriate for text files:
stty Sdevmode <&1

Generate banner page, if required:
case Sbanner in
yes)

x="XXXXXXXXXXXXXXXXXX^
echo 4ixVix\n$x\n$xV
banner 44$2"
echo 4 \T
user=Ngrep "A$2:" /etc/passwd I line I cut -d: -f5%

if[-n44$user"]
then

echo "User: SuserW
else

echo*\i" fi
echo "Request id: $1 Printer: "basename $0%V
date
e c h o ' V
if[-n"$3"]
then

banner $3
fi
echo "NnViSxNnSxNnSxNnSxNn"
echo44\014V
> i

esac
Process file arguments:
copies=$4
shift; shift; shift; shift; shift
files="$*"

If printing binary files (not text), set mode:
case $prmode in
text) ;;
*) stty -opost <&1 ;;
esac

case $prmode in
textlraw) # Process non-graphic files

i= l
while [$i -le Scopies]
do

for file in Sfiles
do

cat44$file"2>&l
echo 44$formfeedV

done
i=xexpr $i + V

done
»»

*) # Process raster graphics file(s):
i= l
while [$i -le Scopies]
do

for file in Sfiles
do

Srasfilter -rot Srot -res Sres -inv Sinv Sfile
echo 44$formfeed\c"

done
i=xexpr Si + V

done
»»

esac
exit 0

6

Solving Those Puzzling Quirks of UNIX Systems Use

By Steven List and Bruce Syewart
Reprinted from lusrlgroup CommUNIXations May/June 1988

With the advent of UNIX System V, the Bourne shell added a
new and powerful capability: functions. Shell functions are
exactly what the name suggests - modular, reusable proce
dures to perform a specific task. Once written, shell functions
may be used by any shell program that needs their services,
including the login shell. Users can build collections of useful
shell procedures or customize their environment by creating
their own commands.

Shell functions offer all the advantages of C functions and
others as well. Because shell functions accept parameters,
their actions can be tailored to the purpose of calling the script
or function. In addition, shell functions can use environmental
variables directly, simply be referencing them. Finally, shell
functions execute quickly; once defined to a script (and here
we include the login shell as well), shell functions execute
from memory and do not have to be read in from disk. This
feature makes shell functions the method of choice for creat
ing custom shell commands.

Defining Shell Functions

Figures la and lb illustrate two forms of a shell function defini
tion. Figure la shows the full form of the function definition. In
this form, the function name is followed by an empty pair of
parentheses. On the next line is an opening brace, signalling
the beginning of the function body. The body of the function
can reference shell commands, other shell scripts or shell
functions. The (optional) return statement completes the body,
followed by a closing brace to mark the end of the function
definition.

Figure lb shows the same function definition in a single line.

Note that a semicolon appears before the closing brace. The
semicolon is required for one-line function definitions.

Arguments are passed to shell functions as positional parame
ters ($1, $2, etc.), exactly as they are in the Bourne shell.
Arguments to shell functions are independent of those passed
to the parent shell. Within a shell function, $3 refers to the third
argument passed to the shell function, not to the third argument
passed to the parent shell. Shell functions can also read and
test environment variables directly.

Customizing Your Environment

Shell functions are particularly useful for customizing your
normal working environment. Rather than writing a special
ized shell script to create a new command, consider using a
shell function. For example, suppose you often need to look
for hidden files and want to sort them by date of last access.
You could create a shell function for this task.

dotfilesO
{

for i in 'Is -aut I fgrep 'AVX

do
if[-f$i]
then

ls-laut$i
fi

done
}

This translates to: List all files in the current directory, includ
ing hidden files. Sort the list by last access date, and select only

Figure la

funcnameO
{

body
return retval 11

1

'

Figure lb

funcnameO {body;}

those files whose names begin with a dot. For each one of
these, show a long listing with time of last access.

Note that an extra step was needed to restrict the output to files
(not directories) whose names begin with a dot. Without this
step, the current directory (dot) and the parent directory (dot-
dot) both qualify, and all files in both directories are listed.

The shell function lists all of the hidden files in the current
directory sorted by date of last access. With a few changes,
you can use the fuction to list the hidden files in any directory,
not just the current one:

dotfilesO
{

for i in Is -aut $1 Igrep 'A.,s

do
if[-f$l/$i]
then

ls-laut$l/$i
fi

done
}

The function now expects a directory name to be passed as an
argument. This directory is then searched for hidden files,
and the resulting listing is sorted by date of last access.

You could use this function to create another shell function to
search as many directories as you like for hidden files. The
new function might look like this:

listdotQ
{

fori in $*
do

echo$i:
dotfiles $i
echo

done
}

You now have two functions: dotfilesf to display the hidden
files in a single directory; and listdot, to invoke dotfiles once
for each directory passed as an argument. You can combine
these two functions into a single file; they become available as
soon as you define them to the shell with the. (dot) command,
the Bourne shell equivalent of source in the C shell.

For example, if you put both of these functions in a file named
dotcheck, you would use the command to define the functions
to the shell:

".dotcheck"

The set command can be used to verify that the functions have
been defined to the shell because shell function definitions will

appear in the output of the command.

With these two functions, you can produce a report of all the
hidden files in each directory on the system. Within each
directory, the hidden files will be sorted by date of last access.
To produce the report, you can use the command:

listdotv find / -type dir -print*

This invokes dotfiles for every directory on the system. Of
course, not all of these directories will be readable (unless you
have super-user priviledges).

Lazy or Efficient?

Shell functions can also be used to create aliases or shortened
forms of commands in the Bourne shell. Some users like to
abbreviate their most frequently used commands with single
letters, even when this saves only two or three keystrokes.
Other users prefer to create shorter, easily remembered ab
breviations for long command lines, or a command with
lengthy options. However, there are pitfalls here, too. A shell
function such as:

IsO
{

ls-aFC
}

will not map the standard Is command to one of your favorite
options. The definition is circular; although the shell will
accept such a function definition, the results will probably not
be what you intended. Use the following format to make your
favorite options the default on the Is command:

IsO
{

/bin/Is -aFC

}

In Conclusion
Shell functions are powerful tools that can make life in the
Bourne shell much more enjoyable. They can be used to
abbreviate lengthy or complicated commands, much like ali
ases in the C shell. They are efficient because they execute
from memory and do not have to be read in from disk at each
invocation. And most importantly, they allow users to create
modular, flexible procedures that can be called from other
shell scripts or functions, including the login shell.

Steven List is cofounder of Transact Software Inc.,
(TSI), developer of custom applications for clients in
the UNIX environment. Bruce Stewart is an inde
pendent software consultant.

Technical UNIX User Group
Financial Statements

Gilles Detillieux, Treasurer

Assets: bank account
Liabilities:

accounts payable
- postage
- paper

Total
Equity: net income

Total liabilities + equity

Mar '89

324.83

7526
2250

97.76

mm.
32483

Balance Sheet

Sep '89

81.62

0.00
_8_L&

81.62

Income and Expenses

Mar '89 Sep '89*

Income: membership dues 478.00

Expenses:
barbeque
bank service charges
cheque printing
name search + notation
postage
stationery

- envelopes
- rubber stamp
- mailing labels
- paper

Total
Total expenses

Net income

0.00
4.05
32.11
30.00
7526

33.17
19.87
33.97
2250

10931
25092

227.07

546.00

4957
5.50
32.11
30.00
23297

33.17
1957
3357
26.92

11353
46438.

8L62

* Sep '89 income and expenses are for whole year (Oct - Sep)

9

Minutes From the Business Meeting
-SeptembeF-42, 1989

1. Minutes:

MOTION: (Gilles Detillieux) The minutes from the September 12th, 1989 meeting be approved.

SECONDED: (Darrin Besler)

In Favour: 13 Opposed: 0 Carried

2. Membership Report:

Please fill out the membership forms you received with the newsletter. The October newsletter is the final newsletter
of this year.

3. Newsletter Report:

Please contribute articles for the newsletter.

4. Treasurers Report:

The financial report will be inserted into the November newsletter.

5.1989-1990 Executive Nomiations:

President: Gilbert Detillieux
Vice President: Derek Hay
TreasurenRichard Willacy
Treasurer: Gilles Detillieux
Newsletter Editor: Susan Zuk
Newsletter Editor: Darren Besler
Secretary: MattBinnie
MteetingCo-ordinator: MattBinnie

Mtotion: (Kirk Marat) Let the above mentioned members be accepted as the Executive for th 1989/90 term.

Seconded: (Darren Sampson)

Infavour: 13 Opposed: 0 Carried

Technical UNTX*Usir Group

01

deal UN[X*Vs*r Group

1. Round Table

2. Business Meeti

Agenda
for

Tuesday, November 14, 1989
7:30pm

UNISYS
UNISYS Building

300-1661 Portage Avenue

ng

7:30

8:00
a) Minutes of September's Meeting
b) Membership Secretary's Report
c) Newsletter Report
d) Treasurer's Report

4. Break 8:30

5. Presented Topic 8:40
Surprise!!!

6. Adjourn 9:30

11

