
January 1989 $2.50-
Volume 1, Number 4

Technical UNIX' Users Group

newsletter of the

Technical UNIX®
User Group
This month...

Editor's Note
The President's Corner
The Internet Worm
Password Aging
Agenda for Meeting on January 10

f ^
Late Breaking News...

Next Meeting to be held at UNISYS
See inside for details

UNIX is a registered trademark of AT&T.

Editor's Note
by Darren Besler, Editor

Happy New Year! I hope everyone survived the
holiday season without indulging too much. I find
that the holiday season always seems to sneak a few
pounds in here or there. It couldn't be all that baking,
could it? I think it's the turkey! Well, at least it only
comes around once a year. I will certainly have to
renew my gym membership now.

Anyhow, this month we have an article/report
describing the "Internet Worm". The Internet Worm
is the name given to that virus that made national
news coverage a little while back. This report came
via the the unix-wizards electronic mailing list that I
am a member off. It gets quite detailed on how the
worm was spread throughout the Internet network.

For those members that are more interested in this
topic, or don't understand the method of attack, we
may be able to set up a meeting that will discuss this
topic in more detail.

Also, in this issue is an article on password aging
by Susan Zuk. This is very appropriate, as it provides
some additional information to last months article on
userid creation, and makes a nice follow up for the
article on the Internet Worm.

I would like to thank Bob Page, Susan Zuk,
Gilbert Detillieux, and Ken Wilkie for their contribu­
tions to this months newsletter. See you at the next
metting!

Group Information

The Technical Unix User Group meets at 7:30 pm the second
Tuesday of every month, except July and August The newslet­
ter is mailed to all paid up members 1 week prior to the meeting.
Membership dues are $20 annually and are due at the October
meeting. Membership dues are accepted by mail and dues for
new members will be pro-rated accordingly.

The Executive

President:
Vice President:
Treasurer:
Secretary:
Newletter Editor:

Membership Sec:
Information:

Gilbert Detillieux 261-9146
Vacant
Gilles Detillieux 261-9146
Susan Zuk (W) 786-8483
Darren Besler (W) 934-5475

(H) 254-3392
Pat Macdonald (W) 474-9870
Gilbert Detillieux 261-9146
Susan Zuk (W) 786-8483

Technical UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Technical UNIX User
Group. Articles may be reprinted without permission as long as
the original author and the Technical UNIX User Group are
given credit.

The Technical UNIX User Group, the editor, and contributors
of this newsletter do not assume any liability for any damages
that may occur as a result of information published in this
newsletter.

r
= \

ANNOUNCEMENT...
Meeting Location Change:
For January's meeting only, we will be gathering at
UNISYS, 300-1661 Portage Avenue. In order to have
an idea of the number of people to expec l please RS VP
if you are planning on coming out to th^ meeting. This
can be done by phoning Susan Zuk at 786-8483 and
leaving a message that you will be attending the
meeting. This can be done up until 5:00 pm January

v'°' l w J)

President's Corner
by Gilbert Detillieux, President

A new year is upon us now! At this time of year, we are filled
with hope and expectation for what may lie ahead. Will this be
the year that UNIX really breaks through to become the domi­
nant operating system? Will our group continue to grow? Will
we finally see one standard UNIX? (Well, let's not get carried
away with our hopes...)

With the new year also comes the time where we each sit down
and look at our past accomplishments, and then set out to
improve ourselves by striving to reach certain new goals in the
year ahead. Yes, it's time for us to make our new year's
resolutions, keep them in mind for the next few hours, and then
proceed to break each one of them throughout the year.

And so, with this self-analytical attitude in mind, your humble
president now sits down to itemize his resolutions, with a half­
hearted intent to keep them:

1. I will learn at least one new UNIX utility every
month. At that rate, I will have mastered UNIX by
the time OS/2 applications start to appear.

2. I will try to say something nice about VMS this
year.

3. I will write at least one column this year that won't
degenerate into a lot of editorial commentary.

4. IwillnotmakeanysnideremarksaboutlBM'srole
in the Open Software Foundation.

5. I promise not to gloat too much when John C.
Dvorak (Author and UNIX-basher in PC Maga­
zine and DEC Professional magazine) admits to
being wrong about the future of UNIX.

6. I promise not to lie about my student status in order
to buy a NeXT Workstation.

According to the latest issue of DEC Professional (Dec. 1988),

the ANSI C Committee has voted the draft standard as final.
Once all i's are dotted and t's crossed, all X3 voting members
vote on the final documents, and the standard could be approved
by ANSI in March 1989. Bless their bureaucratic hearts!

For the January meeting, we'll be back at Unisys (300-1661
Portage, between St. James St. and Route 90), to continue the
system administration workshop that we had in November.
That meeting's discussion was focussed primarily on user ID
creation and user setup.

As system administration is a very broad topic, and can easily
cover several such sessions, we will try to focus in on more
specific topics at each session. At any particular session, the
topic or topics will be decided by a quick vote from those
present Following is a list of some of the suggested topics to
cover:

1. System tuning
a) The sar utility (system activity reporting)
b) Kernel parameters (clists, files, buffers, etc.)
c) Generating a new system
d) Error reports

2. System accounting (process, login accounting, etc.)

3. Communications
a) Serial terminals (stty, gettydefs, terminfo)
b) Printer setup (lp, lpadmin, custom interfaces)
c) UUCP (use, setup, HDB-UUCP)
d) Networks (Ethernet, token ring, X.25, Usenet)

4. Security (passwords, file permissions, etc.)

Notice to non-members: This is the last newsletter you will
receive, unless you sign up at the January meeting, at the latest.
If you can't make it to the meeting, you can phone our member­
ship secretary, Pat Macdonald, or any member of the executive
for that matter, or you can send a $20 cheque to the Technical
UNIX User Group, at our usual mailing address.

The fortune file
This months fortune comes care of Ken Wilkie.

If god had meant us to be nude, He would have given us bigger hands.

2

A REPORT ON THE INTERNET WORM
Bob Page

University of Lowell
Computer Science Department

November 7,1988

[Because of the many misquotes the media have been
giving, this report is Copyright (c) Bob Page, all rights
reserved. Permission is granted to republish this
ONLY if you republish it in its entirety.]

Here's the scoop on the "Internet Worm". Actually it's not a
virus - a virus is a piece of code that adds itself to other
programs, including operating systems. It cannot run inde­
pendently, but rather requires that its "host" program be run to
activate it As such, it has a clear analog to biologic viruses —
those viruses are not considered live, but they invade host cells
and take them over, making them produce new viruses.

A worm is a program that can run by itself and can propagate a
fully working version of itself to other machines. As such, what
was loosed on the Internet was clearly a worm.

This data was collected through an emergency mailing list set
up by Gene Spafford at Purdue University, for administrators of
major Internet sites - some of the text is included verbatim from
that list Mail was heavy since the formation of the list; it
continues to be on Monday afternoon - I get at least 2-3
messages every hour. It's possible that some of this information
is incomplete, but I thought you'd like to know what I know so
far.

The basic object of the worm is to get a shell on another machine
so it can reproduce further. There are three ways it attacks:
sendmail, fingerd, and rsh/rexec.

THE SENDMAIL ATTACK:

In the sendmail attack, the worm opens a TCP connection to
another machine's sendmail (the SMTP port), invokes debug
mode, and sends a RCPT TO that requests its data be piped
through a shell. That data, a shell script (first-stage bootstrap)
creates a temporary second-stage bootstrap file called x$$,ll.c
(where '$$' is the current process ID). This is a small (40-line)
C program.

The first-stage bootstrap compiles this program with the local

cc and executes it with arguments giving the Internet hostid/
socket/password of where it just came from. The second-stage
bootstrap (the compiled C program) sucks over two object files,
x$$,vax.o and x$$,sun3.o from the attacking host It has an
array for 20 file names (presumably for 20 different machines),
but only two (vax and sun) were compiled in to this code. It then
figures out whether it's running under BSD or SunOS and links
the appropriate file against the C library to produce an execut­
able program called /usr/tmp/sh - so it looks like the Bourne
shell to anyone who looked there.

THE FINGERD ATTACK:

In the fingerd attack, it tries to infiltrate systems via a bug in
fingerd, the finger daemon. Apparently this is where most of its
success was (not in sendmail, as was originally reported).
When fingerd is connected to, it reads its arguments from a pipe,
but doesn't limit how much it reads. If it reads more than the
internal 512-byte buffer allowed, it writes past the end of its
stack. After the stack is a command to be executed ("/usr/ucb/
finger") that actually does the work. On a VAX, the worm knew
how much further from the stack it had to clobber to get to this
command, which it replaced with the command "/bin/sh" (the
bourne shell). So instead of the finger command being exe­
cuted, a shell was started with no arguments. Since this is run in
the context of the finger daemon, stdin and stdout are connected
to the network socket, and all the files were sucked over just like
the shell that sendmail provided.

THE RSH/REXEC ATTACK:

The third way it tried to get into systems was via the .rhosts and
/etc/hosts.equiv files to determine' trusted' hosts where it might
be able to migrate to. To use the .rhosts feature, it needed to
actually get into people's accounts - since the worm was not
running as root (it was running as daemon) it had to figure out
people's passwords. To do this, it went through the /etc/passwd
file, trying to guess passwords. It tried combinations of: the
username, the last, first, last+first, nick names (from the
GECOS field), and a list of special "popular" passwords:

3

aaa
academia
aerobics
airplane
albany
albatross
albeit
alex
alexander
algebra
aliases
alphabet
ama
amorphous
analog
anchor
andromache
animals
answer
anthropo­
genic
anvils
anything
aria
ariadne
arrow
arthur
athena
atmosphere
aztecs
azure
bacchus
bailey
banana
bananas
bandit
banks
barber
baritone
bass
bassoon
batman
beater
beauty
beethoven
beloved
benz
beowulf
berkeley
berliner
beryl
beverly
bicameral
bob
brenda

brian
bridget
broadway
bumbling
burgess
campanile
cantor
cardinal
carmen
Carolina
Caroline
cascades
castle
cat
cayuga
Celtics
cerulean
change
Charles
charming
charon
Chester
cigar
classic
clusters
coffee
coke
collins
commrades
computer
condo
cookie
cooper
Cornelius
couscous
creation
creosote
cretin
daemon
dancer
daniel
danny
dave
december
defoe
deluge
desperate
develop
dieter
digital
discovery
disney
dog
drought
duncan

eager golfer
easier gorgeous
edges gorges
edinburgh gosling
edwin gouge
edwina graham
egghead gryphon
eiderdown guest
eileen guitar
einstein gumption
elephant guntis
elizabeth 1
ellen 1
emerald 1
engine 1
engineer 1
enterprise 1
enzyme 1
ersatz 1
establish 1
estate 1
euclid I
evelyn i
extension]
fairway 1
felicia 1
fender 1
fermat 1
fidelity I
finite i
fishers i
flakes i
float i
flower 1
flowers i
foolproof i
football i
foresight
format
forsythe
fourier
fired
friend
frighten
fun
fungible
gabriel
gardner]
garfield 1
gauss 1
george 1
gertrude 1
ginger]
glacier 1
gnu 1

lacker
lamlet
landily
lappening
larmony
larold
larvey
lebrides
leinlein
lello
lelp
lerbert
liawatha
libernia
loney
tiorse
iiorus
lutchins
imbroglio
imperial
include
ngres
mna
innocuous
irishman
sis
apan
essica
ester
ixian
ohnny
oseph
oshua
udith
uggle
ulia
tcathleen
Permit
kernel
tirkland
tcnight
adle
ambda
lamination

larkin
larry
lazarus
lebesgue
lee
leland
leroy
lewis
light
lisa
louis
lynne
macintosh
mack
maggot
magic
malcolm
mark
markus
marty
marvin
master
maurice
mellon
merlin
mets
michael
michelle
mike
minimum
minsky
moguls
moose
morley
mozart
nancy
napoleon
nepenthe
ness
network
newton
next
noxious
nutrition
nyquist
oceanogra­
phy
ocelot
Olivetti
Olivia
oracle
orca
orwell
osiris
oudaw

oxford
pacific
painless
Pakistan
pam
papers
password
patricia
penguin
peoria
percolate
persimmon
persona
pete
peter
philip
phoenix
pierre
pizza
plover
Plymouth
polynomial
pondering
pork
poster
praise
precious
prelude
prince
princeton
protect
protozoa
pumpkin
puneet
puppet
rabbit
rachmanin-
off
rainbow
raindrop
raleigh
random
rascal
really
rebecca
remote
rick
ripple
robotics
rochester
rolex
romano
ronald
rosebud
rosemary

roses
ruben
rules
ruth
sal
saxon
scamper
scheme
scott
scotty
secret
sensor
serenity
sharks
sharon
Sheffield
sheldon
shiva
shivers
shuttle
signature
simon
simple
singer
single
smile
smiles
smooch
smother
snatch
snoopy
soap
socrates
sossina
sparrows
spit
spring
springer
squires
strangle
Stratford
Stuttgart
subway
success
summer
super
superstage
support
supported
surfer
suzanne
swearer
symmetry
tangerine
tape

target
tarragon
taylor
telephone
temptation
thailand
tiger
toggle
tomato
topography
tortoise
toyota
trails
trivial
trombone
tubas
tuttle
umesh
unhappy
unicorn
unknown
urchin
utility
vasant
vertigo
vicky
village
Virginia
warren
water
weenie
whatnot
whiting
whitney
will
william
Wil­
liamsburg
willie
winston
Wisconsin
wizard
wombat
woodwind
wormwood
yaco
yang
yellowstone
yosemite
zap
Zimmerman

4

[I wouldn't have picked some of these as "popular" passwords,
but then again, Fm not a worm writer. What do I know?]

When everything else fails, it opens /usr/dict/words and tries
every word in the dictionary. It is pretty successful in finding
passwords, as most people don't choose them very well. Once
it gets into someone's account, it looks for a .rhosts file and does
an 4rsh' and/or 'rexec' to another host, it sucks over the
necessary files into /usr/tmp and runs /usr/tmp/sh to start all
over again.

Between these three methods of attack (sendmail, fingerd,
.rhosts) it was able to spread very quickly.

THE WORM ITSELF:

The *sh' program is the actual worm. When it starts up it
clobbers its argv array so a 'ps' will not show its name. It opens
all its necessary files, then unlinks (deletes) them so they can't
be found (since it has them open, however, it can still access the
contents). It then tries to infect as many other hosts as possible
- when it sucessfully connects to one host, it forks a child to
continue the infection while the parent keeps on trying new
hosts.

One of the things it does before it attacks a host is connect to the
telnet port and immediately close it Thus, "telnetd: ttloop: peer
died" in /usr/adm/messages means the worm attempted an
attack.

The worm's role in life is to reproduce - nothing more. To do
that it needs to find other hosts. It does a 'netstat -r -n' to find
local routes to other hosts & networks, looks in /etc/hosts, and
uses the yellow pages distributed hosts file if it's available. Any
time it finds a host, it tries to infect it through one of the three
methods, see above. Once it finds a local network (like
129.63 .nn.nn for ulowell) it sequentially tries every address in
that range.

If the system crashes or is rebooted, most system boot proce­
dures clear /tmp and /usr/tmp as a matter of course, erasing any
evidence. However, sendmail log files show mail coming in
from user /dev/null for user /bin/sed, which is a tipoff that the
worm entered.

Each time the worm is started, there is a 1/15 chance (it calls
randomO) that it sends a single byte to ernie.berkeley.edu on
some magic port, apparently to act as some kind of monitoring
mechanism.

THE CRACKDOWN:

Three main 'swat' teams from Berkeley, MITandPurdue found
copies of the VAX code (the .o files had all the symbols intact
with somewhat meaningful names) and disassembled it into
about 3000 lines of C. The BSD development team poked fun
at the code, even going so far to point out bugs in the code and
supplying source patches for it! They have not released the
actual source code, however, and refuse to do so. That could
change - there are a number of people who want to see the code.

Portions of the code appear incomplete, as if the program
development was not yet finished. For example, it knows the
offset needed to break the BSD fingerd, but doesn't know the
correct offset for Sun's fingerd (which causes it to dump core);
it also doesn't erase its tracks as cleverly as it might; and so on.

The worm uses a variable called 'pleasequit' but doesn't
correctly initialize it, so some folks added a module called
__worm.o to the C library, which is produced from:

i n t p l e a s e q u i t = - 1 ;
the fact that this value is set to -1 will cause it to exit after one
iteration.

The close scrutiny of the code also turned up comments on the
programmer's style. Verbatim from someone at MIT:

From disassembling the code, it looks like the pro­
grammer is really anally retentive about checking
return codes, and, in addition, prefers to use array
indexing instead of pointers to walk through arrays.

Anyone who looks at the binary will not see any embedded
strings - they are XOR'ed with 81 (hex). That's how the shell
commands are imbedded. The "obvious" passwords are stored
with their high bit set

Although it spreads very fast, it is somewhat slowed down by
the fact that it drives the load average up on the machine - this
is due to all the encryptions going on, and the large number of
incoming worms from other machines.

[Initially, the fastest defense against the worm is is to create a
directory called /usr/tmp/sh. The script that creates /usr/tmp/sh
from one of the .o files checks to see if/usr/tmp/sh exists, but
not to see if it's a directory. This fix is known as 'the condom'.]

NOW WHAT?

None of the ULowell machines were hit by the worm. When
B5N staffers found their systems infected, they cut themselves

5

ernie.berkeley.edu

off from all other hosts. Since our connection to the Internet is
through BBN, we were cut off as well. Before we were cut off,
I received mail about the sendmail problem and installed a patch
to disable the feature the worm uses to get in through sendmail.
I had made local modifications to fingerd which changed the
offsets, so any attempt to scribble over the stack would probably
have ended up in a core dump.

Most Internet systemsrunning4.3BSDorSunOS have installed
the necessary patches to close the holes and have rejoined the
Internet. As you would expect, there is a renewed interest in
system/network security, finding and plugging holes, and
speculation over what will happen to the worm's creator.

If you haven't read or watched the news, various log files have
named the responsible person as Robert Moms Jr., a 23-year
old doctoral student at Cornell. His father is head of the
National Computer Security Center, the NS A's public effort in
computer security, and has lectured widely on security aspects
of UNIX.

Associates of the student claim the worm was a 'mistake' - that

he intended to unleash it but it was not supposed to move so
quickly or spread so much. His goal (from what I understand)
was to have a program 'live' within the Internet If the reports
that he intended it to spread slowly are true, then it's possible
that the bytes sent to ernie.berkeley.edu were intended to
monitor the spread of the worm. Some news reports mentioned
that he panicked when, via some "monitoring mechanism" he
saw how fast it had propagated.

A source inside DEC reports that although the worm didn't
make much progress there, it was sighted on several machines
that wouldn't be on its normal propagation path, i.e. not gate­
ways and not on the same subnet These machines are not
reachable from the outside. Morris was a summer intern at DEC
in '87. He might have included names or addresses he remem­
bered as targets for infesting hidden internal networks. Most of
the DEC machines in question belong to the group he worked
in.

The final word has not been written -1 don't think the FBI have
even met with this guy yet It will be interesting to see what
happens.

Password Aging
by Susan Zuk, Secretary

At the November system administration workshop, a method of requiring users to periodically change their passwords was
mentioned. Some of the workshop participants were interested in this topic so the following is a description of how to implement
the facility.

Password aging is created and controlled by the super user. It forces and also restricts changes to passwords. The procedure is
handled through the passwd file which is found in the /etc directory. The aging information is added to the password field of each
login-id definition (Each line in the file holds the information required for a user to log into their system). The following is an
illustration of a passwd file and some samples of password aging:

userl:nhskOujsksiiwj,7/:User 1:/usr/acct/userl:/bin/sh
user2:jhdksh768hdjsh,12:User 2:/usr/acct/user2:/bin/sh
user3:hjdJJU8u5us6gh,..:User 3:/usr/acct/user3:/bin/sh
user4:d89hf7hfdd6gHs:User 4:/usr/acct/user4:/bin/sh

Notice the first three lines include a comma in the encrypted password field (the area after the first colon). This states that password
aging has been activated. The final line, user4, is a user without password aging.

6

ernie.berkeley.edu

The first character following the comma states the maximum number of weeks before a change is required. The second character
following the comma defines the minimum number of weeks before a change is allowed. The minimum change prevents a user
from changing their password and immediately changing back to the same one.

The values of the password aging characters are found in the following table:

(. ^
Password Aging Values

. 0
/ 1
0 2
1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 11
A 12
B 13
C 14
D 15

E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

U
V
w
X
Y
Z
a
b
c
d
e
f
g
h
i
J

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

k 48
1 49
m 50
n 51
o 52
p 53
q 54
r 55
s 56
t 57
u 58
v 59
w 60
x 61
y 62
z 63

V J
Let's take a look at what the values mean for user 1, user2, and user3. Userl shows 7/ after the encrypted password and comma.
This indicates that the user can change their password after the first week up to a maximum of 9 weeks. The value 7 correspond­
ing to 9 weeks and the value / corresponding to 1 week, as displayed in the above table.

Whenever there is a situation with the minimum value being greater than the maximum value only the super user can change the
password. For example, user2 has a maximum value of 3 weeks (can change the password up to 3 weeks) but a minimum value
of 4 weeks (the password is not allowed to be changed until 4 weeks have passed). The user can never reach the point where he/
she can change the password.

User3 shows a special case. The two periods indicate that the user can change the password upon the first login (when first given
a userid). After this first session the periods are removed and password aging does not exist

When the user logs into the system after expiration has occurred, the system displays a message requesting for a new password.
The message reads as follows:

Your password has expired. Choose a new one.
Changing password for user3
New password:

Password aging assists the system administrator in ensuring that specific security guidelines are maintained. Passwords are kept
current for all system user* by allowing the system administrator to specify various password time limits, or by modifying the
parameters as required.

7

Technical UNIX* User Group

1. Round Table

2. Business Meeti

Agenda
for

Tuesday, January 10,1989
7:30pm
UNISYS

Canadian Indemnity Building
300-1661 Portage Avenue

ng

7

8
a) Minutes of November's Meeting
b) Membership Secretary's Report
c) Newsletter Report
d) Treasurer's Report

3. Break 8

4. Presented Topic 8
System Administration Workshop

a) Resource Accounting
b) System Tuning
c) Backup/Restore Procedures

5. Adjourn 9

8

