
Vol. 16 No. 1 September 2003

1

$2.50

MUUGlines
September 9, 2003:
Regular Expressions
In our September meeting Steve Moffat will be
talking about Regular Expressions. Some say the
“Generalized Regular Expression Parser”, or grep,
may be the most frequently used command in Unix.
Using this simple command more effectively can
save you time and give you better results every day.
Whether it is grep, egrep, fgrep, perl, or any of the
other programs that use or support text pattern
matching, you can use Unix better if you know
what Regular Expressions can do for you.

Meetings are held at the IBM offices at 400
Ellice Ave. (between Edmonton and Kennedy).
When you arrive, you will have to sign in at the
reception desk, and then wait for someone to take
you (in groups) to the meeting room. Please try to
arrive by about 7:15 PM, so the meeting can start
promptly at 7:30 PM. Don’t be late, or you may not
get in.

Limited parking is available for free on the
street, or in a lot across Ellice from IBM, for $1.00
for the evening. Indoor parking is also available
nearby, at Portage Place, for $2.00 for the evening.

Call For Nominations
Hear ye, hear ye!

This is a call for nominees to participate in the
election for the MUUG board. Those elected will
serve from October 2003 until October 2004. The
deadline to nominate yourself, or someone else, is
September 23, 2003. Instructions follow.

The MUUG board is charged with coordinating
the meetings and other events by the group. It’s fun,
and you get a role in guiding the group. All are
encouraged to apply.

———————————-
MUUG Board Elections - Call for Nominations
Every October the Manitoba Unix User Group

holds its Annual Meeting, the main goals of which
are to elect a new Board of Directors and to pass any
special resolutions. (Aside from that, it is a regular

The Manitoba UNIX User Group Newsletter

meeting.) Any member in good standing (i.e. a
paid-up member) can be nominated to run for a
position.

As of this writing, the following members of the
current Board have let their names stand for re-
election: Gilbert Detillieux, Kevin McGregor, Doug
Shewfelt and Adam Thompson.

Get Involved
To put your name on the list, do the following:
1. Ensure your membership is in good standing

(i.e. do you have to renew?)
2. Find another member willing to second your

nomination
3. Email your nomination to

<election@muug.mb.ca>, with a CC to your
seconder

4. Get your seconder to send an email to
<election@muug.mb.ca> indicating their
support for your nomination

In lieu of email, written correspondence will
also be accepted (c/o MUUG Election Committee,
P.O. Box 130, St-Boniface, Winnipeg, MB, R2H 3B4).
It is important to include the following information
in your nomination: Name, Title, Employer/Occu-
pation, short (100 word) biography. Without this
information, we can’t put together the list of nomi-
nees to give to the rest of the members, can we?

In the event the number of nominees is fewer
than the number of vacant positions, all will be
accepted by acclamation. If there are more, deci-
sion will be made by secret ballot at the Annual
Meeting. Nominees should familiarize themselves
with the MUUG bylaws, found at http://
www.muug.mb.ca/pub/bylaws/. Any questions
about the election or the nomination process can be
directed to Sean Walberg at the
election@muub.mb.ca mailbox, or by phone at
975-5987 during business hours. Snail mail and
fax information can be found at http://
www.muug.mb.ca/about.html.

Again, the deadline for nominations is Septem-
ber 23, 2003, with the election being held at the
October 7th meeting. Good luck to all!

September 2003 Vol. 16 No. 1

2

Saving space with Screen
By Sean Walberg
If you’re like me, you’ve got more than a few shells
going on at any given time. Not a problem when
you’ve got two 21" monitors, but it can get a bit
cramped if you’re remotely logged in via SSH, or,
even more painful, a serial console. “screen” is a
program that lets you multiplex several terminals
into one, and is the topic of this article.

Stepping back a bit, when you are typing into
a shell (or a program you started from the shell,
such as pine), you’re communicating with a Virtual
Terminal, or VTY. When you log in, you’re as-
signed a VTY, which gives you and your shell a
way of passing characters to and from the rest of the
system. The problem is, you can generally only run
one thing at a time per shell. If you need to, you log
in a second time, or, if you’re even smarter, you get
pretty handy with sending processes to the back-
ground. Screen’s job is to create new VTYs for you,
and let you switch between them from the comfort
of your original VTY. Think of it like Mozilla’s
tabbed windows — you have one physical win-
dow, but several web pages you can cycle through.

Invoking screen is simple, just type “screen”.
Nothing special should happen, the screen will
clear and you’ll be back at the command prompt. If
you’re typing from within an X-Terminal, you
might notice the title has changed to something like
“[screen 0] tcsh”, indicating that you’re in window
#0, and the command was tcsh (my login shell).

Commands in screen are, by default, prefixed
with Control-A, the short form the man page uses
is C-a. Thus, “C-a ?” means to press Control and A,
followed by the question mark. Go ahead, do it
now, you’ll be taken to the help screen. I’ll guide
you through the most common features, but always
remember how to get to the help screen.

Now that we’re within a window (that’s what
the man page calls ‘em, works for me), it’s time to
start creating more windows. A new shell can be
started with “C-a c”. This is window 1. To get back
to the first window, try “C-a 0”. Sending C-a
followed by a number gets you to a specific win-
dow. To cycle through the windows one by one, the
command is “C-a space”, or “C-a n” (think “next”).
To cycle backward, it’s “C-a p” (previous).

Yet another way to start a window is to type
“screen” followed by the command, from within a
window. Thus, “screen pine” opens up a new

window and runs pine. “C-a c” is then, basically,
the same as typing “screen /bin/tcsh”, or whatever
your login shell is.

Whenever you exit the shell or program that
started up the window, that window is closed. If
you’re really angry at a window and can’t close it,
“C-a K” (kill) will close it abruptly for you. When
you exit your final window, screen exits with a
small message.

Since screen manages several VTYs on your
behalf, we can background the screen process and
pick it up later, even from a different location.
While screen is running, detach it with “C-a d”.
You’ll be notified with a message, and returned
back to your original login shell. To pick up again,
run screen with the -R option (resume), and you’re
back. “screen -R” is a good way of running screen
in the first place, as it’ll pick up a detached screen
session if it’s there, or if not, simply start up a new
one. If you decide to put screen in your startup
scripts, this is a good way of running it.

Those are the basics of screen. There are a lot
of fancy things that can be done, such as scrolling
back (C-a ESC), splitting your screen into multiple
screens (C-a S), switching between them (C-a C-I),
and even cutting and pasting. The man page lists all
the fun stuff you can do.

Screen is a versatile program that saves space
on your display, not to mention gives you some
abilities normally found only in graphical termi-
nals. Throw it in your login script, and make sure
it’s always there when you need it.

Cleaning FTP
By Sean Walberg
What separates the men from the boys, at least to
this crusty old Unix admin, is the ability to auto-
mate repetitive tasks. Nothing annoys me more
than having to run the same commands day after
day, especially when there is no thought going into
it.

Script kiddies have this down to an art form. If
you run a publicly accessible FTP server that allows
uploads, you’ve probably noticed odd files magi-
cally appearing. If you’ve set up your server cor-
rectly, you should only see a few files. If not, you
could find yourself short of hard drive space, but
that’s another article. The files being uploaded are
for various reasons, namely to see if your site is a
viable warez server, and how fast the connection is.

Vol. 16 No. 1 September 2003

3

Either way, I’m not keen on keeping these files
around, so I delete them.

If the kiddies can automate these file transfers,
then I should be able to automate their deletion.
Since there is valid data that could be in my
incoming directory, a simple “rm -rf *” from cron
won’t do it, so we’ll be a bit smarter.

Looking in my incoming directory, I see the
following:

[root@poochie incoming]# ls
030727220658p 030808013101p foo.tar.gz
test

030728235109p 1mbtest.ptf space.asp

The directories starting with “03” aren’t mine,
nor are “1mbtest.ptf” and “space.asp”. By hand,
I’d run

rm -rf 030727220658p
...

rm space.asp

to get rid of them, which obviously sucks. Of
course, those directories look like timestamps, so I
can’t count on them being the same. A shell script,
and some regular expression magic will help me
here.

In the top of any shell script, you must define
the interpreter that is to run it. Following that is
generally any user changeable parameters:

#!/bin/bash

BASE=/export/home2/ftp/incoming

BAD=“1mbtest.ptf space.asp”

Here I’m running my script under bash, and
I’m defining the incoming directory and some
static “bad” filenames.

I should really make sure the user has enough
permissions to carry on, otherwise it’s just wasting
everyone’s time:

if [! -w $BASE]; then
echo Must be able to write to $BASE
exit

fi

Here, I check to see if the base directory is
writable (-w). If not (the “!”), spit out a message and
quit.

I still have to build a list of stuff to delete. Even
though I know the names of the files, those pesky
directories are still around. The general format
seems to be 12 numbers followed by a letter, which

sounds like a job for regular expressions:

cd $BASE
DIRS=‘find . -type d -iregex ‘.*/[0-
9][0-9][0-9][0-9][0-9][0-9][0-9][0-

9][0-9][0-9][0-9][0-9][a-z]’ ‘

That’s a mouthful!
First, change into the directory (you’ll see why

later).
The next line builds the list of directories into

the $DIRS variable. In shell scripting, any time you
assign something in backticks to a variable, the
“something” is run by the shell, and the results
assigned to the variable. For example,

DATE=‘/bin/date‘

echo $DATE

In my command above, I’m using the find
command to produce a list of the script kiddie’s
directories. I start the find at the current directory,
am only looking for directories (-type d), and am
passing a case insensitive regular expression to
match files.

The regular expression I’m using is long but
simple. I start off by matching any path (.*/),
followed by 12 digits and a letter. Any time you see
a regexp in square brackets, it means “anything in
this set”. [0-9] thus means “any digit”, and [a-z] is
“any letter”. Had this been done in perl, “.*\/
\d{12}\w” would have sufficed, but the regular
expression parser in find isn’t as robust as perl’s.

Whenever developing a shell script that in-
volves backticks, it’s helpful to have another termi-
nal open to test the stuff in the backticks. For
example, I developed the regular expression from
the shell, then copied it into my shell script. It’s a
time saver, and leads to better code.

At this point, the list of directories to delete is in
$DIRS, and the list of files to delete is in $BAD. It’s
a simple matter to loop through now, and delete
what’s not needed:

for i in $BAD $DIRS; do
if [-d $BASE/$i]; then
rm -rf $BASE/$i
fi
if [-e $BASE/$i]; then
rm -f $BASE/$i
fi

done

This loop goes through all files in both $BAD
and $DIRS. If it’s a directory (-d), then “rm -rf” is

September 2003 Vol. 16 No. 1

4

run on the directory. If that fails, a simple “does the
file exist?” test is run (-e), and if so, the file is
deleted.

Another handy tip for developing shell scripts
is to ensure your script behaves properly before
you let it loose. For example, I’m running some rm
commands from an automated script. Before I set it
up in cron, I added an “echo” before the “rm”, so
that I had

echo rm -rf $BASE/$i
and

echo rm -f $BASE/$i

When I ran the script, it only printed off what it
was going to do before it did it. Then I could verify
the output to make sure it wasn’t going to destroy
my filesystem overnight. Once that was done, I
removed the echos, and the script was live.

So that was a look at a simple maintenance
script. I threw it into my nightly maintenance tasks,
and keep my incoming directory relatively clean.
One more thing I can stop wasting time with.

Here’s the full script:
#!/bin/bash
BASE=/export/home2/ftp/incoming
BAD=”1mbtest.ptf space.asp”

if [! -w $BASE]; then
echo Must be able to write to $BASE
exit
fi

cd $BASE
DIRS=‘find . -type d -iregex ‘.*/[0-
9][0-9][0-9][0-9][0-9][0-9][0-9][0-
9][0-9][0-9][0-9][0-9][a-z]’ ‘

for i in $BAD $DIRS; do
if [-d $BASE/$i]; then
rm -rf $BASE/$i
fi
if [-e $BASE/$i]; then
rm -f $BASE/$i
fi
done

Firebird Moves To Replace
Mozilla
by Mozillazine
Mozilla Firebird has grown from its modest begin-
nings as an offshoot of the mainstream Mozilla
project to become the centre of the Mozilla Foun-
dation’s future strategy. In the past, development

has sometimes been tumultuous: weeks of furious
activity have often been followed by periods of
almost no change at all and at several points the
project has come close to death.

Fortunately, Firebird development has been
rapid in recent weeks as the program makes the last
remaining changes necessary for it to become the
default Mozilla browser, which is likely to occur in
the 1.6 timeframe.

A Mozilla Application Suite feature that has
recently been reimplemented in Firebird is a selec-
tor for alternative stylesheets. When a page speci-
fies one or more preferred or alternative stylesheets,
Firebird displays an icon on the Status Bar. Click-
ing on this icon brings up a list of the preferred and
alternative stylesheets, as well as a ‘Basic Theme’
item, which applies only persistent stylesheets, and
a ‘No Theme’ option, which causes all external
stylesheets and embedded stylesheets to be ig-
nored.

The Options dialogue Fonts & Colors and
Connection panels have been removed (their set-
tings can now be accessed via buttons in the Web
Features and General panels respectively), leaving
space for Downloads and Advanced. The latter
panel supplies a UI for several features that have
never had one before, allowing users to configure
tabbed browsing behaviour and enable/disable func-
tionality such as smooth scrolling and automatic
image resizing.

Sending Us E-Mail?
Due to the amount of e-mail MUUG receives, we’ve
set up an auto-reply to give you immediate feedback,
and redirect some of the e-mail to the appropriate
places. Why not look at http://www.muug.mb.ca/
about.html#contacts first?

Share Your Thoughts
E-mail us with your comments on the newsletter,
whether it’s criticisms or commendations, and con-
tinue to send in articles or ideas for same.

If you have a How-To or other idea, and aren’t
ready to give a presentation at MUUG, an article is
a great alternative! If you can write better than the
editor, that’s terrific; if you can’t, submit it anyway
and we’ll get it into shape for publication. We know
that many of you have some great ideas and lots of
knowledge.

Why not share? Mailto: editor@muug.mb.ca.

