
Volume 7, Number 7 May 1995 $2 .50

Manitoba UNIX* User Group

MUUG Lines
Newsletter of the Manitoba UNIX" User Group

By David Bonn, co-founder, Mazama Software Labs
Maintaining reasonable system security on each and every
machine on a local area network may well be impossible.
Even in the best of cases, this is a dauntingly complex
administrative task. Installation of new software will quietly
introduce a security hole - and this problem isn't restricted
to obvious security-related programs either . Many large
applications use networking services in surprising ways, and it
is in general impossible to predict how even the most innocu-
ous piece of software might affect a local area network - this
is especially true of software for personal computers . From an
administrative standpoint, it is also very unlikely that the
person responsible for overall security will have significant
control over what software is being ran on all workstations .

A firewall deals with this problem by assuming that all
machines inside the network can trust one another . What a
firewall does is provide a single entry point that can be
closely monitored for security problems . A firewall can run
on inexpensive hardware that can be administratively
controlled by those responsible for security .

The ideal firewall is quite simple . It only has four
essential requirements :

•

	

It should be very easy to set up and require little
maintenance .

•

	

It should provide accurate and secure logging of
interesting firewall events .

•

	

It should not interfere or even be noticeable to
legitimate users of the local network, even when they
access resources outside the local network.

This Month's Meeting

Meeting Location :
Our next meeting is scheduled for Tuesday, May 9,
at 7:30 PM. Once again, the meeting will be held in
the auditorium of the St-Boniface Hospital Research
Centre, just south of the hospital itself, at 351 Taché .
You don't have to sign in at the security desk -just
say you're attending the meeting of the Manitoba
UNIX User Group . The auditorium is on the main
floor, and is easily found from the entrance .

Meeting Agenda : See inside for details .

Printing Courtesy of Xerox Canada Ltd.

Why Have a Firewall?

•

	

It should keep unauthorized people outside the local
network from entering the local network .

Quite a few existing solutions to the firewall problem
exist . Like all solutions, there are quite a few tradeoffs . In
general, the more convenient solutions are much more
expensive .

Writing packet filtering rules is very, very hard . Having
good support tools that make it easier to write correct packet
filtering rules is very important .

Most commercial routers have some kind of packet
filtering capability built in . If you have access to the router
you are using, this might be a good solution for you .

Router-based packet filtering hasn't been very satisfac-
tory in practice . Some of the reasons for this include :

•

	

Router-based firewalls are hard to configure .
•

	

It is rare to be able to filter on all properties of IP
packets .

•

	

Many routers attempt to optimize filter rules .
•

	

These optimizations often break over-specified, but
working, filter rules .

•

	

Many people rent their routers from their internet
service provider and don't have access to the router
for configuration purposes .

•

	

If you upgrade routers, or purchase a different brand
of router, you'll have to do your configuration all
over again .

There are many freeware, shareware, and commercial
solutions to firewalls - watch this space for reviews . w

Ethernet Q & A	5
SIG Sideline	6
May 9th Meeting Agenda	6

Inside This Issue

Newsletter Editor's Ramblings	2
Presidents Comer	3
C++ Q & A	 4

RAMBLINGS

I remember the good old days back in '89 when we used to
code. Yup, don't think I'll ever see times like that again.
Now all you young whipper snappers have your integrated
packages, your code generators, and whatnot . Phooey! Why
I remember one project way back when . . .

Sounds convincing doesn't it? How many years off is
this scenario? Twenty or thirty? Try right now!

Many companies are sick and tired of shelling out
hundreds of thousands of dollars on computer systems just to
keep up with their competitors . Not only do companies need
new computer hardware every five years, they need custom
software that takes advantage of the new hardware's capa-
bilities. The cost of custom software usually exceeds the
cost of new hardware by a long shot. How did the computer
industry manage to work itself into this state?

Let's go back to the 60s. Say a company bought a
mainframe in 1965 - what could they expect to have to
purchase in the near future? Well, they would have someone
write custom software for the original machine, and they
would have to purchase an operating system. For the next
five to eight years, the company purchases upgrades to their
mainframe and operating system. That's it. Sure, the

The 1993-1994 Executive

MUUG Lines

Is Programming A Lost Art?
By Andrew Trauzzi

Above prices are per issue . The first ad is charged at
the full price ; each successive month is 1/2 price .

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand .)

Internet E-mail: editor@mu ug.mb.ca

2

upgrades were expensive, but it only took a few employees a
day to install them . Contrast that with buying a hundred new
PCs and associated software.

The price is roughly about the same, but you have to
have a team of eight people installing the computers, and
two full-time staff constantly baby-sitting the machines . The
staff becomes confused because of the new operating
system, and they all have to go on courses . On top of all
that, the custom software you had written four years ago
must be completely rewritten for the new platform! The
company can live with retraining staff, because it's relatively
inexpensive and boosts productivity . The new custom
software is deemed too expensive, so the company buys a
pre-written package and fires half of its programmers .

These days, in-house programmers don't really program
- they script, they integrate, and they customize . It's not
the number of languages you know, it's the number of
packages you know . There's something else - the clerk
next to you is rather handy with macros, so they move him to
your position. He may not have any formal training, but he
costs $15,000 less per year, and whines a lot less about not
being able to program anymore .

	

w

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Manitoba
UNIX User Group . Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter .

Group Information
The Manitoba UNIX User Group meets at 7 :30 PM the
second Tuesday of every month, except July and
August. Meeting locations vary . The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter's mailing label . Membership dues are
accepted at any meeting, or by mail .

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug .mb.ca

May 1995

Advertising Rates

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

President : Bary Finch (W) 934-1690
Vice-President: Rob Wright (W) 488-5175
Treasurer/Secretary : Doug Shewfelt (W) 986-3748
Publicity Director Rory Macleod (W) 488-5168
Programs : Doug McLean (W) 985-1643
Mailing List: Roland Schneider 1-204-785-9179
Membership Sec . : Roland Schneider 1-204-785-9179
Newsletter editor : Andrew Trauzzi (W) 986-3898
Past President Susan Zuk (W) 989-3530
Information : Bary Finch (W) 934-1690

(FAX) 934-1308
(or) Andrew Trauzzi (W) 986-3898

(FAX) 586-8567

PRESIDENT'S CORNER

Well it seems to finally be warming up around here, and the
highest technology item on people's minds is a rake . However,
we still have one more meeting to entice you indoors with .

Unfortunately I missed our last meeting, due to being
out of town. I gather the presentation by The North West
Company was well received. The presenter, David Hodge,
Director, Technology Services, gave a good overview of not
only what The North West Company is, but also how it is
using UNIX to enable their business . Maybe I should say
"our" business, as I do in fact work for The North West
Company, and have a great familiarity with how we are
using UNIX. I'd better as I'm the UNIX analyst!

With being away, I of course had to have an alternate
host for the meeting. Thanks once again to Rob Wright,
Vice-President, for hosting in my absence .

In the ongoing saga of the MONA refund cheques, the
first group of you will have received your refund cheques by
now. If any of you have questions about this matter, please
call me or email me .
P As for the rest of you whom are awaiting a refund
cheque, you won't have to wait much longer! The new
cheque order has now arrived, and I will be processing the
next and final batch of refund cheques over the next week .
There are about 50 more of you to receive refund cheques, so
it will take a bit to get all the letters printed and the cheques
signed. But we'll get them out as soon as possible .

MUUG Lines

It Seems to be Spring
By Bary Finch

CORPORATE SPONSORS

(hp]

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

HEWLETT
PACKARD

THE DOCUMENT COMPANY

XEROX

LINE
BUSINESS SYSTEMS

d a 9
ital

UM

Great-West Life Assurance
Company

TANDEM COMPUTERS

.sun
microsystems

3

The other members that are still awaiting refunds are the
UniForum members that never received memberships, due to
UniForum Canada closing up . Now that the new cheques
have arrived, I will be sending out refunds to each of you,
along with a membership form for the US based UniForum
organization. This will allow you to apply the refund (in
Canadian dollars) towards the US UniForum membership (in
US dollars) if you so desire .

I am still awaiting the forms from UniForum that show
what the affiliate requirements are for MUUG . Once
MUUG's board reviews these, we will decide if we want to
become an affiliate of UniForum or not . Stay tuned .

I must say I'm a little disappointed in the lack of people
that want to help out with the SIG . There were so many
people that enjoy attending the meetings, and no-one is
stepping up to the responsibility of hosting the SIG meetings .
It isn't a lot of effort for someone that's already attending the
meetings . Make that commitment, and help us out by
becoming the SIG Coordinator .

On a happier note, we all have the annual MUUG BBQ
to look forward to as our June meeting . We are still setting
the location of this event, but I'm sure it will turn out as well
as it always has . More details will be coming in the next
newsletter.

That's all the rambling (oops! sorry Andrew) I've got
for this month. See you at the next meeting!

	

-0

May 1995

PROGRAMMING

This month's C++ Q&A continues last month's comparison of C++
and Smalltalk The complete C++ FAQ is now available in a book
formal - Addison-Wesley Publishers 0-201-58958-3 $32 .25.

Question 86: What is `static typing', and how is it similar/
dissimilar to Smalltalk?
Static (most say 'strong') typing says the compiler checks
the type-safety of every operation statically (at compile-
time), rather than to generate code which will check things at
run-time . For example, the signature matching of fn argu-
ments is checked, and an improper match is flagged as an
error by the compiler, not at run-time.

In 00 code, the most common 'typing mismatch' is
invoking a member function against an object which isn't
prepared to handle the operation. Ex : if class 'X' has
member fn f () but not g (), and 'x' is an instance of class X,

then x . f () is legal and x . g () is illegal . C++ (statically/
strongly typed) catches the error at compile time, and
Smalltalk (dynamically/weakly typed) catches 'type' errors
at run-time. (Technically speaking, C++ is like Pascal
[pseudo statically typed], since pts casts and unions can be
used to violate the typing system; you probably shouldn't use
these constructs very much) .
Question 87 : Which is a better fit for C++: `static typing'
or `dynamic typing'?
The arguments over the relative goodness of static vs
dynamic typing will continue forever. However one thing is
clear : you should use a tool like it was intended and designed
to be used. If you want to use C++ most effectively, use it as
a statically typed language . C++ is flexible enough that you
can (via ptr casts, unions, and #defines) make it 'look' like
Smalltalk.

There are places where ptr casts and unions are neces-
sary and even wholesome, but they should be used carefully
and sparingly. A pts cast tells the compiler to believe you . It
effectively suspends the normal type checking facilities . An
incorrect ptr cast might corrupt your heap, scribble into
memory owned by other objects, call nonexistent methods,
and cause general failures . It's not a pretty sight. If you
avoid these and related constructs, you can make your C++
code both safer and faster - anything that can be checked at
compile time is something that doesn't have to be done at
run-time, one 'pro' of strong typing .

Even if you're in love with weak typing, please consider
using C++ as a strongly typed OOPL, or else please consider
using another language that better supports your desire to
defer typing decisions to run-time . Since C++ performs
100% type checking decisions at compile time, there is no

built-in mechanism to do any type checking at run-time ; if
you use C++ as a weakly typed OOPL, you put your life in
your own hands .
Question 88: How can you tell If you have a dynamically
typed C++ class library?
One hint that a C++ class library is weakly typed is when

MUUG Lines

C++ Q&A
By Marshall P. Cline

4

everything is derived from a single root class, usually
`Object'. Even more telling is the implementation of the
container classes (List, Stack, Set, etc) : if these containers
are non-templates, and if their elements are inserted/ex-
tracted as ptrs to `Object', the container will promote weak
typing. You can put an Apple into such a container, but
when you get it out, the compiler only knows that it is
derived from Object, so you have to do a pointer cast (a
'down cast') to cast it 'down' to an Apple (you also might
hope a lot that you got it right, cause your blood is on your
own head) .

You can make the down cast 'safe' by putting a virtual
fn into Object such as 'are_you_an_Apple()' or perhaps
'give_me_the_name_of_your_class()', but this dynamic
testing is just that: dynamic. This coding style is the essence
of weak typing in C++. You call a function that says
'convert this Object into an Apple or kill yourself if its not
an Apple', and you've got weak typing: you don't know if
the call will succeed until run-time .

When used with templates, the C++ compiler can
statically validate 99% of an application's typing information
(the figure '99%' is apocryphal ; some claim they always get
100%, others find the need to do persistence which cannot be
statically type checked) . The point is : C++ gets genericity
from templates, not from inheritance .
Q89: How do you use inheritance in C++, and is that
different from Smalltalk?
There are two reasons one might want to use inheritance : to
share code, or to express your interface compliance . ie : given
a class 'B' ('B' stands for 'base class', which is called
'superclass' in Smalltalkese), a class 'D' which is derived
from B is expressed this way :

class B { 1* . . .*/ } ;
class D : public B { /* . . .*/) ;

This says two distinct things : (1) the bits(data structure) +
code(algorithms) are inherited from B, and (2) 'D's public
interface is 'conformal' to 'B's (anything you can do to a B,
you can also do to a D, plus perhaps some other things that
only D's can do ; ie: a D is-a-kind-of-a B) .
In C++, one can use inheritance to mean :
•

	

#2(is-a) alone (you intend to override most/all inherited
code)
•

	

both #2(is-a) and #1 (code-sharing)
but one should never never use the above form of inherit-
ance to mean
•

	

#1 (code-sharing) alone (ex : D really isn't a B, but. . .)
This is a major difference with Smalltalk, where there is only
one form of inheritance (C++ provides 'private' inheritance
to mean 'share the code but don't conform to the interface') .

Dr. Marshall P. Cline is the founder and President of Paradigm
Shift, Inc., a firm that specializes in on-site training for C++, DOD,
OOA, consulting, and reusable/extensible C++ class libraries . For
more information, send e-mail to "info @parashift.com".

	

a*

May 1995

HANDS-ON

Ethernet Q&A
Originally Compiled by Marc A. Runkel

Submitted by Andrew Trauzzi

This is the first in a short series of articles briefly explaining
some Ethernet concepts . ATM may be hot, but it's more
likely that you will be installing or using an Ethernet
network.
Question 1 : What is a baseband network?
A baseband network is one that provides a single channel for
communciations accross the physical medium (e.g ., cable),
so only one device can transmit at a time . Devices on a
baseband network, such as Ethernet, are permitted to use all
the available bandwidth for transmission, and the signals
they transmit do not need to be multiplexed onto a carrier
frequency . An analogy is a single phone line such as you
usually have to your house : Only one person can talk at a
time - if more than one person wants to talk everyone has
to take turns .
Question 2 : Ok, so what is a broadband network?
Simplisticly, it is the opposite of a baseband network. With
broadband, the physical cabling is virtually divided into
several different channels, each with its own unique carrier
frequency, using a technique called "frequency division
modulation" . These different frequencies are multiplexed
onto the network cabling in such a way to allow multiple
simultaneous "conversations" to take place . The effect is
similar to having several virtual networks traversing a single
piece of wire. Network devices "tuned" to one frequency
can't hear the "signal" on other frequencies, and visa-versa .
Cable-TV is an example of a broadband network : multiple
conversations (channels) are transmitted simultaneously over
a single cable ; you pick which one you want to listen to by
selecting one of the frequencies being broadcast .
Question 3 : What is an OSI Model?
The Open Systems Interconnect (OSI) reference model is the
ISO (International Standards Organization) structure for the
`ideal" network architecture. This Model outlines seven
areas, or layers, for the network. These layers are (from
highest to lowest) :
7.) Applications : Where the user applications software lies .

Such issues as file access and transfer, virtual terminal
emulation, interprocess communication and the like are
handled here .
Presentation : Differences in data representation are
dealt with at this level . For example, UNIX-style line
endings (CR only) might be converted to MS-DOS style
(CRLF), or EBCIDIC to ASCII character sets .
Session: Communications between applications across a
net-work is controlled at the session layer . Testing for
out-of-sequence packets and handling two-way commu-
nication are handled here .
Transport : Makes sure the lower three layers are doing
their job correctly, and provides a transparent, logical
data stream between the end user and the network
service s/he is using . This is the lower layer that
provides local user services .
Network: This layer makes certain that a packet sent
from one device to another actually gets there in a
reasonable period of time . Routing and flow control are
performed here . This is the lowest layer of the OSI
model that can remain ignorant of the physical network .
Data Link: This layer deals with getting data packets on
and off the wire, error detection and correction and
retransmission. This layer is generally broken into two
sub-layers : The LLC (Logical Link Control) on the
upper half, which does the error checking, and the MAC
(Medium Access Control) on the lower half, which deals
with getting the data on and off the wire .
Physical: The nuts and bolts layer. Here is where the
cable, connector and signaling specifications are defined.

There is also the undocumented but widely recognized ninth
network layer:
9.) Bozone (a.k.a ., loose nut behind the wheel): The user

sitting at and using (or abusing, as the case may be) the
networked device. All the error detection/correction
algorithms in the world cannot protect your network
from the problems initiated at the Bozone layer .

6 .)

5 .)

4 .)

3 .)

2 .)

1 .)

Question 4 : What does an ethernet packet look like?
See the information below, as described in the National databook . The ethernet packet preamble is normally generated by the
chipset. Software is responsible for the destiantion address, source address, type, and data . The chips normally will append
the frame check sequence .
Preamble

	

62 bits A series of alternating l's and 0's used by the ethernet receiver to acquire bit
synchronization . This is generated by the chip .

Start Of Frame Delimiter

	

2 bits Two consecutive 1 bits used to acquire byte alignment . This is generated by the chip .
Destination Ethernet Address 6 bytes Address of the intended receiver. The broadcast address is all l's .
Source Ethernet Address

	

6 bytes The unique ethernet address of the sending station .
Length or Type field

	

. . 2 bytes For IEEE 802 .3 this is the number of bytes of data. For Ethernet I&II this is the type
of packet. Types codes are > 1500 to allow both to coexist . The type code for IP
packets is 0x800.

Data - 46 bytes to 1500 bytes

	

Short packets must be padded to 46 bytes .
Frame Check Sequence

	

4 bytes The FCS is a 32 bit CRC calculated using the AUTODIN II polynomial . This field is
normally generated by the chip.

The shortest packet is : 6 + 6 + 2 + 46 = 60 bytes The longest packet is : 6 + 6 + 2 + 1500 =1514 bytes

	

a

MUUG Lines

	

5

	

May 1995

MEETINGS

SIG Sideline
By Andrew Trauzzi

The SIG group needs a new co-ordinator! If
you are interested in taking an active role in
MUUG activities, please contact the board at
<board@muug .mb .ca>.

The next SIG meeting will be May 16, 1995, at 7 :30
PM. As usual, the meeting will be at ISM, 400 Ellice Avenue
(behind Portage Place).

The Fortune File
Sing this one to Michael Jackson's "Beat it"

You're processing some words when your keyboard goes dead,
Ten pages in the buffer, should have gone to bed,
The system just crashed, but don't lose your head,
Just BOOT IT, just BOOT IT .

Better think fast, better do what you can,
Read the manual or call your system man,
Don't want to fall behind in the race with Japan,
So BOOT IT,

Get the system manager to
BOOT IT, BOOT IT,
Even though you'd rather shoot it.
Don't be upset, it's only some glitch .
All that you do is flip a little switch .
BOOT IT, BOOT IT,
Get right down and restitute it .
Don't get excited, all is not lost.
CP/M, UNIX or MS/DOS
Just BOOT IT, boot it, boot it, boot it. . .

You gotta have your printout for the meeting at two,
The system says your jobs at the head of the queue,
Right then the thing dies but you know what to do,
BOOT IT.

You always get so worried when the system runs slow,
And when it finally crashes, man you feel so low,
But computers make mistakes (they're only human you know)
So BOOT IT,

Call the local guru to
BOOT IT, BOOT IT,
Go ahead re-institute it .
If you're not lucky, get the book off the shelf,
But if you are, it'll do it itself .
BOOT IT, BOOT IT,
Then go find the guy who screwed it!
Operating systems are built to bounce back,
Whether it's a Cray or a Radio Shack .

BOOT IT! BOOT IT!

MUUG Lines 6

Agenda
for

Tuesday, May 9, 1995, 7:30 PM

Doug McLean will present the MS Word HTML editor,
and Oliver Friedrichs of Freenet will present security.
Note that both topics are tentative .

Coming Up
Meeting :
Next month's meeting is scheduled for Tuesday, June
13, at 7:30 PM. Meeting location is TBA because the
meeting topic is the annual MUUG barbeque!

Got any ideas for meeting topics? Any particular
speaker, company, or product you'd like to see at one of
our meetings? Just let our new meeting coordinator,
Doug McLean, know . You can e-mail him at
<dmclean@muug .mb .ca> .

Newsletter :
If you are interested in a particular topic, let me know .
I'm sure I could coerce you into writing an article! I
could use a few articles - especially shorter ones - half
a page to one page (400 to 1000 words) would be fine .

Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again - please
submit your questions to the old guy via e-mail to
<m-ex@muug.mbca>. He may be old, but he's not ready

for retirement yet!

May 1995

Samuel N. Cohen Auditorium
St-Boniface Hospital Research Centre

Main Floor, 351 Tache

1 . President's Welcome 7:30

2 . Business Meeting 7:35

3 . Short Topic 7:40

4 . Coffee Break and Informal Discussion 7:50

5 . Feature Topic 8:00

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

