
MUUG Lines 1 September 1994

Volume 6, Number 9

Printing Courtesy of Xerox Canada Ltd.

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX ® User Group

September 1994 $2.50

Manitoba UNIX® User Group

Newsletter Editor’s Ramblings 2
President’s Corner3
C++ Q & A ...4
UNIX Q & A ...5
XKeyCaps Review...................................6
Ask Monsieur...7
SIG Sideline ..8
September 13th Meeting Agenda 8

Meeting Location:
Our next meeting is scheduled for Tuesday, Septem-
ber 13, at 7:30 PM. Once again, the meeting will be
held in the auditorium of the St-Boniface Hospital
Research Centre, just south of the hospital itself, at
351 Taché. You don’t have to sign in at the security
desk — just say you’re attending the meeting of the
Manitoba UNIX User Group. The auditorium is on
the main floor, and is easily found from the en-
trance.

Meeting Agenda: See inside for details.

Pushing the Research Envelope
By Andrew Trauzzi

A friend of mine recently received his doctorate in math-
ematics — no easy feat. He attempted to explain his thesis
to me, but I was lost after the words “It was based on...” I
congratulated him and asked when he expects his research to
be put to practical use. He was amused by this question and
said that most mathematical research does not find a purpose
until after the researcher’s death!

This contrasts sharply with another friend’s research
within the computer science field. Basically, his research
on object-oriented databases is being put to use before he
has had a chance to complete it. While quite gratifying,
this ‘demand’ for knowledge has put quite a strain on the
academic departments across the continent (and probably
the world).

Corporations in today’s computer market need an ‘edge’.
If they can market and deliver a product that appears to be on
the cutting edge of technology, then they will do everything in
their power to exploit their advantage. This includes stretch-
ing, bending, and manipulating (among other various distor-
tions) the truth. I am sure many of you have used products that
were released prematurely. Many of these products contain
techniques and procedures that were recently developed, or
(possibly even worse) developed in house. Even after a
number of releases, these products still act as if they were in
ßeta release — mainly because that actually are.

Last year, Ken Barker gave an excellent presentation to
the MUUG group on object-oriented databases (OODMBS).
Basically, his presentation described OODBMS, pointed out

some shortcomings that needed to be resolved, and then
stated that object-oriented databases do not exist yet. Many
people named actual products that claimed that they were
OODBMS, and he pointed out that they were merely a
relational database with an object front-end. Hopefully, Ken
will be speaking to us this year, and give us an update on
OODBMS.

OODBMS are an excellent example of the ‘tail wagging
the dog.’ Industry and consumers demanded a product that
Universities and researchers had not finished refining. In
time, the various issues will be resolved, but not without
companies exploiting whatever they can.

I include the C++ FAQ each month because I think that
object technology will play an even larger role in software
development than it already does. However, software
developers need to be aware of the hype surrounding OOP
and the huge and possibly unrealistic productivity gains
reported by users of OOP. A recent study by Index Summit
reports that 42 percent of North American respondents are
looking into OOP compared to 6 percent involved with OOP
production development. Corporate information systems
operations have been slower than developers to adopt OOP
because OOP tools enable programmers to create strong
applications, but the tools can be difficult to utilize.

This month’s speaker is Tim Siemens of Online Busi-
ness Systems Inc. (one of our corporate sponsors). Tim will
be presenting on object technologies and the impact that they
have on modern software development. ✒

MUUG Lines 2 September 1994

Deadlines MUUG Monthly
Issue Number Month Articles Final Copy Mailing Meeting Date
Volume 6, No. 10 October September 17 September 24 October 1 October 11, 1994
Volume 7, No. 01 November October 15 October 22 October 29 November 8, 1994
Volume 7, No. 02 December November 19 November 26 December 3 December 13, 1994
Volume 7, No. 03 January December 17 December 24 December 29 January 10, 1995
Volume 7, No. 04 February January 14 January 21 January 28 February 7, 1995 (1st Tues.)
Volume 7, No. 05 March February 18 February 25 March 4 March 14, 1995
Volume 7, No. 06 April March 18 March 25 April 1 April 11, 1995
Volume 7, No. 07 May April 15 April 22 April 29 May 9, 1995
Volume 7, No. 08 June May 20 May 27 June 3 June 13, 1995
Volume 7, No. 09 September August 19 August 26 September 2 September 12, 1995
Volume 7, No. 10 October September 16 September 23 September 30 October 10, 1995

Mailing deadline is always 10 days prior to meeting date, to ensure sufficient advance notice of motions, etc. All copy (ads, columns, meeting notices,
etc.) must be submitted by noon on the final copy deadline date, which is one week prior to the mailing deadline. Articles and any other material that
isn’t time sensitive must be submitted by the articles deadline, which is one week prior to the final copy deadline.

President: Bary Finch (W) 934-2723
Vice-President: Ramon Ayre (W) 947-2669
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Brad West (W) 983-0336
Membership Sec.: Greg Moeller (H) 786-6132
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-3898
Publicity Director Rory Macleod (W) 488-5168
Past President Susan Zuk (W) 989-3530
Information: Bary Finch (W) 934-2723

(FAX) 934-2620
(or) Andrew Trauzzi (W) 986-3898

(FAX) 986-5966

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August. Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

RAMBLINGS

MUUG Lines Newsletter Deadlines for 1994-1995

Welcome Back!
I hope that everyone had an enjoyable summer! The days
are becoming shorter and the nights a little cooler which can
only mean that Winter is around the corner!! (sorry) For
those of you that would like something to do on those cold,

dark nights, here is a schedule of newsletter submission
deadlines. This schedule is tentative and may be subject to
change. In any case, welcome back to another MUUG year,
and I hope to see you at the September meeting. ✒

By Andrew Trauzzi

MUUG Lines 3 September 1994

PRESIDENT’S CORNER

CORPORATE SPONSORS

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

ONLINE
B U S I N E S S S Y S T E M S

TM

Great-West Life Assurance
Company

The 1994 / 1995 Program Begins!
By Bary Finch

Welcome back from your summer off! I realize that is just a summer
off from MUUG, and not that you all get two months of vacation. It
was good to see that we had more of a usual Winnipeg summer, with
some good temperatures, and a lot less rain than the last couple of
years. But back to “business”, and what MUUG is doing for the 1994
/ 1995 program.

For this coming year we have a number of exciting presenta-
tions for you. Over the summer the MUUG board met and reviewed
the results of the survey that we had you fill out during the May
meeting. This was your chance to let us know which topics you
really wanted to see.

We had a good number of the membership participate, which
resulted in a representative opinion of what you want to see in the
upcoming months. The board went through the list and chose topics
that were the most popular. It was a great checkpoint against what the
board “thought” was popular, and what you really wanted to see.

So we have set up a program for 1994 / 1995 that tentatively
contains all of the following topics: O-O (Object-Oriented technolo-
gies), Network Management (this was the number one topic), WWW
(World Wide Web), Mosaic, Firewalls, ATM (that’s Asynchronous
Transfer Mode, not “how to break into Automated Teller Machines”
[see May’s front page, for that! — ed.]), X-stations, X-server
software for PCs, MBnet, and EDI (that’s Electronic Data Inter-
change, not some female entertainer married to a “Steve”).

The development of the year’s program is one of the most
important roles for the MUUG board. It enables us to map out what
we’re doing each month, and with the addition of the survey results,
get a program that both the board and the membership is happy with.

There will be some change to the board this year, as several of
the people currently on the board are moving on to other commit-
ments. So we will have a number of new board members, and

possibly a number of changes in the roles of the people that remain
on the board, as people may want to try another board role.

The new members to the board will be decided on over
September, based on asking people that have expressed an interest
in participating on the board. Once all the new members have been
found, and their roles have been decided on, the entire new board
will be introduced to the general membership at our Annual General
Meeting (AGM). The AGM will be held during the October
meeting, as usual.

In case you’re wondering, the meetings will again be held at
the St.Boniface Research Center Auditorium. Our gracious host will
again be Paul Hope, who arranges for MUUG to use these facilities,
and makes sure all the needed audio visual equipment is in place.

Our meeting times will also remain the same, as the second
Tuesday of every month, from September to May. June is of course
our Annual BBQ, and the Christmas meeting will again be a wine
and cheese held in the St.Boniface Research Center atrium. Start
time for all our meetings will again be 7:30 p.m.

However, there will be one big change in this schedule in
February. We needed to change our meeting from the second
Tuesday, as that is February 14, Valentine’s Day. The board felt
that even though we have very interesting meetings, bringing your
loved one along wouldn’t be an appropriate way to spend the
Valentine’s Day evening. So February’s meeting will be held on
February 7, the FIRST Tuesday of the month.

As a final note, I want to express my disappointment at not
being able to attend the first meeting of the season. Unfortunately I
will be away on vacation. This was a climate based decision, so
there was no real choice.

So I won’t see you in September, but I look forward to seeing
all of you at the October meeting! ✒

MUUG Lines 4 September 1994

PROGRAMMING

C++ Q&A
By Marshall P. Cline

Dr. Marshall P. Cline is the founder and President of Paradigm
Shift, Inc., a firm that specializes in on-site training for C++, OOD,
OOA, consulting, and reusable/extensible C++ class libraries. For
more information, send e-mail to “info@parashift.com”. ✒

This month’s column examines inheritance and incremental
programming. The complete C++ FAQ is now available in a book
format — Addison-Wesley Publishers 0-201-58958-3 $32.25.
Question 45: What is inheritance?
Inheritance is what separates abstract data type (ADT) program-
ming from OOP. It is not a ‘dark corner’ of C++ by any means. In
fact, everything discussed so far could be simulated in your garden
variety ADT programming language (ex: Ada, Modula-2, C [with a
little work], etc). Inheritance and the consequent (subclass)
polymorphism are the two big additions which separate a language
like Ada from an object-oriented programming language.
Question 46: Ok, ok, but what is inheritance?
Human beings abstract things on two dimensions: part-of and kind-
of. We say that a Ford Taurus is-a-kind-of-a Car, and that a Ford
Taurus has parts such as Engine, Tire, etc. The part-of hierarchy
has been a first class part of software since the ADT style became
relevant, but programmers have had to whip up their own custom-
ized techniques for simulating kind-of (usually in an ad hoc
manner). Inheritance changes that; it adds ‘the other’ major
dimension of decomposition.

An example of ‘kind-of decomposition’, consider the genus/
species biology charts. Knowing the internal parts of various fauna
and flora is important for certain applications, but knowing the
groupings (kinds, categories) is equally important.
Question 47: How do you express inheritance in C++?
By the ‘: public ’ syntax:

class Car : public Vehicle {
// ^^^^^^ —— ': public' is
// pronounced 'is-a-kind-of-a'
//...
};

We state the above relationship in several ways:
• Car is ‘a kind of a’ Vehicle
• Car is ‘derived from’ Vehicle
• Car is ‘a specialized’ Vehicle
• Car is the ‘subclass’ of Vehicle
• Vehicle is the ‘base class’ of Car
• Vehicle is the ‘superclass’ of Car (this not as common

in the C++ community)
Question 48: What is ‘incremental programming’?
In addition to being an abstraction mechanism that makes is-a-kind-
of relationships explicit, inheritance can also be used as a means of
‘incremental programming’. A derived class inherits all the
representation (bits) of its base class, plus all the base class’
mechanism (code). Another device (virtual functions, described
below) allows derived classes to selectively override some or all of
the base class’ mechanism (replace and/or enhance the various
algorithms).

This simple ability is surprisingly powerful: it effectively adds
a ‘third dimension’ to programming. After becoming fluent in
C++, most programmers find languages like C and Ada to be ‘flat’
(a cute little book, ‘Flatland’, aptly describes those living in a two
dimensional plane, and their disbelief about a strange third
dimension that is somehow neither North, South, East nor West, but
is ‘Up’).

As a trivial example, suppose you have a Linked List that is

too slow, and you wish to cache its length. You could ‘open up’ the
List ‘class’ (or ‘module’), and modify it directly (which would
certainly be appropriate for such a simple situation), but suppose
the List’s physical size is critical, and some important client cannot
afford to add the extra machine word to every List. Another option
would be to textually copy the List module and modify the copy,
but this increases the amount of code that must be maintained, and
also presumes you have access to the internal source code of the
List module. The OO solution is to realize that a List that caches its
length is-a-kind-of-a List, so we inherit:

class FastList : public List {
public:
//override operations so the cache
//stays 'hot'
protected: int length;
//cache the length here
};

Question 49: Should I pointer-cast from a derived class to its
base class?
The short answer: yes — you don’t even need the ‘cast’.
Long answer: a derived class is a specialized version of the base
class (‘Derived is-a-kind-of-a Base’). The upward conversion is
perfectly safe, and happens all the time (a ptr to a Derived is in fact
pointing to a [specialized version of a] Base):

void f(Base* base_ptr);
void g(Derived* derived_ptr) { f(derived_ptr); }
// perfectly safe; no cast

(note that the answer to this question assumes we’re talking about
‘public’ derivation; see below on ‘private/protected’ inheritance for
‘the other kind’).
Question 50: Derived* —> Base* works ok; why doesn’t
Derived** —> Base** work?
A C++ compiler will allow a Derived* to masquerade as a Base* ,
since a Derived object is a kind of a Base object. However passing
a Derived** as a Base** (or otherwise trying to convert a De-
rived** to a Base**) is (correctly) flagged as an error.

An array of Deriveds is-NOT-a-kind-of-an array of Bases. I
like to use the following example in my C++ training sessions:

‘A Bag of Apples is NOT a Bag of Fruit’
Suppose a ‘Bag<Apple> ’ could be passed to a function taking a

Bag<Fruit> such as ‘f(Bag<Fruit>& b) ’. But ‘f() ’ can insert any
kind of Fruit into the Bag. Imagine the surprise on the caller’s face
when he gets the Bag back only to find it has a Banana in it!
Here’s another example I use:
‘A ParkingLot of Car is-NOT-a-kind-of-a ParkingLot of Vehicle’

 (otherwise you could pass a ParkingLot<Car>* as a ParkingLot
<Vehicle>* , and the called fn could park an Eighteen-Wheeler in a
ParkingLot designed for Cars!)

These improper things are violations of ‘contravariance’
(that’s the scientific glue that holds OOP together). C++ enforces
contravariance, so you should trust your compiler at moments like
these. Contravariance is more solid than our fickle intuition.

MUUG Lines 5 September 1994

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

Question 1: Why doesn’t redirecting a loop work as intended?
(Bourne shell)
 Take the following example:

foo=bar
while read line
do

do something with $line
foo=bletch

done < /etc/passwd
echo "foo is now: $foo"

Despite the assignment “foo=bletch ” this will print “ foo is now:
bar ” in many implementations of the Bourne shell. Why? Because
of the following, often undocumented, feature of historic Bourne
shells: redirecting a control structure (such as a loop, or an “if ”
statement) causes a subshell to be created, in which the structure is
executed; variables set in that subshell (like the “foo=bletch ”
assignment) don’t affect the current shell, of course.

The POSIX 1003.2 Shell and Tools Interface standardization
committee forbids the behaviour described above, i.e. in P1003.2
conformant Bourne shells the example will print “foo is now:
bletch ”.
 In historic (and P1003.2 conformant) implementations you can
use the following ‘trick’ to get around the redirection problem:

foo=bar
make file descriptor 9 a duplicate of
file descriptor 0 (stdin); then connect
stdin to /etc/passwd; the original stdin
is now 'remembered' in file descriptor 9;
see dup(2) and sh(1)
exec 9<&0 < /etc/passwd
while read line
do

do something with $line
foo=bletch

done
make stdin a duplicate of file descriptor 9,
i.e. reconnect it to the original stdin; then
close file descriptor 9
exec 0<&9 9<&-
echo "foo is now: $foo"

This should always print “foo is now: bletch”. Right, take the next
example:

foo=bar
echo bletch | read foo
echo "foo is now: $foo"

This will print “foo is now: bar ” in many implementations, “foo
is now: bletch ” in some others. Why? Generally each part of a
pipeline is run in a different subshell; in some implementations
though, the last command in the pipeline is made an exception: if it
is a builtin command like “read”, the current shell will execute it,
else another subshell is created.

POSIX 1003.2 allows both behaviours so portable scripts
cannot depend on any of them.

Question 2: How do I run ‘passwd ’, ‘ ftp ’, ‘ telnet ’, ‘ tip ’ and
other interactive programs from a shell script or in the
background?

These programs expect a terminal interface. Shells makes no
special provisions to provide one. Hence, such programs cannot be
automated in shell scripts.

The ‘expect ’ program provides a programmable terminal
interface for automating interaction with such programs. The
following expect script is an example of a non-interactive version of
passwd(1) .

username is passed as 1st arg, password as 2nd
set password [index $argv 2]
spawn passwd [index $argv 1]
expect "*password:"
send "$password\r"
expect "*password:"
send "$password\r"
expect eof

expect can partially automate interaction which is especially useful
for telnet, rlogin, debuggers or other programs that have no built-in
command language. The distribution provides an example script to
rerun rogue until a good starting configuration appears. Then,
control is given back to the user to enjoy the game.

Fortunately some programs have been written to manage the
connection to a pseudo-tty so that you can run these sorts of
programs in a script.

To get expect, email “send pub/expect/expect.shar.Z ” to
<library@cme.nist.gov> or anonymous ftp same from
<ftp.cme.nist.gov> .

Another solution is provided by the pty 4.0 program, which
runs a program under a pseudo-tty session and was posted to
comp.sources.unix , volume 25. A pty-based solution using named
pipes to do the same as the above might look like this:

#!/bin/sh
/etc/mknod out.$$ p; exec 2>&1
(exec 4<out.$$; rm -f out.$$
<&4 waitfor 'password:'

echo "$2"
<&4 waitfor 'password:'

echo "$2"
<&4 cat >/dev/null
) | (pty passwd "$1" >out.$$)

Here, ‘waitfor ’ is a simple C program that searches for its argument
in the input, character by character.

A simpler pty solution (which has the drawback of not
synchronizing properly with the passwd program) is

#!/bin/sh
(sleep 5; echo "$2"; sleep 5; echo "$2") |
pty passwd "$1"

Question 3: How do I check the exit status of a remote com-
mand executed via "rsh" ?
This doesn't work:
rsh some-machine some-command || echo "Command failed"
The exit status of ‘rsh’ is 0 (success) if the rsh program itself
completed successfully, which probably isn't what you wanted.

If you want to check on the exit status of the remote program,
you can try using Maarten Litmaath’s ‘ersh ’ script, which was
posted to alt.sources in January, 1991. ersh is a shell script that
calls rsh, arranges for the remote machine to echo the status of the
command after it completes, and exits with that status. ✒

MUUG Lines 6 September 1994

you go, and back out of a change fairly easily. However, you
wouldn’t want to go through a manual process like this too
often. Fortunately, the program can write to its standard
output a series of commands that are suitable as input to
xmodmap. Unfortunately, the program doesn’t give you the
option of directly saving this output to a named file. (You
would either invoke the program with output redirected to a
file, or just select the output and paste it in to an editor
window.)

This ability to produce xmodmap input files is very
useful, and saves you having to code such files by hand.
Unfortunately, the files are specific to the keyboard type you
selected, since they contain keycode commands. (It would be
fairly easy to edit such files to use keysym commands instead,
which would be more general.)

The man page does warn of the dire consequences of
changing key mappings with the wrong keyboard type
selected, fortunately. The man page also does a good job of
explaining not only how the program works, but gives a lot
of background information on keysyms, keycodes, and
modifier mappings. This is shamelessly copied from the X
Protocol document and InterClient Communications Con-
ventions Manual, as they do indicate. This is a good thing,
since it would unlikely ever be read by mere mortals
otherwise.

How To Build It
Building XKeyCaps is fairly straightforward if you’ve got
X11R4 or newer, and have the xmkmf script and imake
program. The notes on building it are fairly skimpy, but if
you’ve built X clients before, this shouldn’t be a problem.
Before building, you might want to edit the Imakefile, and
define a reasonable default keyboard type, since the
program’s ability to guess the right type is pretty weak. (It’s
not the program’s fault — that sort of information just isn’t
always readily available.)

There was one snag with building the program that
you’re also likely to encounter. At one point, the compilation
fails with the following error:

cc -O2 -pipe -I./kbds -target sun4 -c all-kbds.c
"./kbds/sgi5de-r5-map.h", line 17: warning:
undeclared initializer name XK_dead_circumflex
"./kbds/sgi5de-r5-map.h", line 17: illegal initial-
ization
"./kbds/sgi5de-r5-map.h", line 17: cannot recover
from earlier errors: goodbye!
Compilation failed
*** Error code 1
make: Fatal error: Command failed for target 'all-
kbds.o'

HANDS-ON

X Window provides a very powerful and flexible way of
redefining the mapping for any key on the keyboard.
Unfortunately, the documentation that describes this is
scattered in several obscure locations that are likely to be
missed by the casual user. Also, the utility provided to work
with these mappings, xmodmap, is quite primitive and
tedious to work with.

Fortunately, there is an excellent little X Window client
application, available as free contributed software, that
makes it easy to understand and work with this stuff. It’s
called XKeyCaps, and it’s a must for anyone who’s going to
spend time modifying keyboard mappings.

When you call up the program, it will try to take a guess
at the type of keyboard you’ve got on your X server. It
knows about a large number of these, and presents a nice
dialog box that lets you select the right type, in case it
couldn’t. (You can also compile in a reasonable default, and
specify the type you want as a resource or command line
option.) Once the keyboard type has been selected, it
displays a graphical representation of that keyboard.

What You See
Each displayed key is labeled with the key-top labels you’d
expect to see on it, and the hexadecimal keycode value is
also shown. (At the lowest level, each key in X is assigned a
numeric keycode, which is usually a one-byte number that
the keyboard’s hardware will generate whenever that key is
pressed or released.) As you move the cursor over the
displayed keys, several status lines at the top indicate how
the key is mapped to keysyms (a symbolic representation of
the key, which most X applications will make use of to
decide what the key’s action should be), and how it is
mapped to ASCII codes, if appropriate. You can toggle the
modifier keys (e.g. Shift and Ctrl) by clicking on their
graphical representation, or by pressing and holding the
actual modifier keys. The ASCII value displayed for the
other keys will then be modified accordingly.

The program also gives you the option to ‘type’ into a
selected window, by clicking on the key’s graphical repre-
sentation rather than by using the keyboard itself. (This
doesn’t seem particularly useful, unless the key’s mapping
has been changed in a non-obvious way.) More useful is the
ability to edit the mapping for any key. By holding the right
mouse button over the graphic of a particular key, you get a
pop-up menu for that key that lets you edit the keysyms for
the key, exchange two keys, duplicate the key somewhere
else, disable the key, or restore its default mapping.

What You Get
Editing key mappings in this way is fairly easy, but can be
time consuming if there are lots of mappings to change.
Changes take effect immediately, so you can test things as

XKeyCaps
Making Sense of X Window Key Mapping

By Gilbert Detillieux

☛

MUUG Lines 7 September 1994

XKeyCaps Summary
Name: XKeyCaps
Description: X11 client program to graphically display and

edit the X keyboard mapping.
Archive Location: .export.x.org:/contrib/applications/

xkeycaps-2.24.tar.Z
Archive size: 290025 bytes
Approx Space: 2.5 MB
Time to Install: 10 minutes.
Pros: .. • very handy utility if you’ve ever had to struggle with xmodmap

• ability to write xmodmap input files very useful
• well written, comprehensive man page

Cons: . • didn’t compile correctly due to undeclared keysyms; had to
delete definitions for SGI German keyboard

• xmodmap files only written to standard output, rather than
allowing a named file

• xmodmap files always contain keycode, rather than keysym,
commands; not portable to other keyboard types

The problem is that one of the keyboards that the
program tries to define, the SGI German keyboard, relies on
keysym definitions that may not exist on other systems.
(That was the case with the standard X11R5 distribution.)
The solution is to edit the file “kbds/all-kbds.h ”, search for
lines containing the string “sgi5de ” and remove (or com-
ment out) all references to this. This won’t likely have any
adverse effects on the program’s usefulness, unless you’ve
got a few German keyboards kicking around.

After that, the compilation and installation should be a
breeze. I did have a problem with the program dumping core
on an unaligned memory reference when I tried to run it on a
DECstation (with a MIPS R3000 processor). That may have
had more to do with the way X11R5 was built on that
machine than with the program itself (since the program dies
within one of the Xt library calls). The program ran without
any problems on a Sun SPARC architecture. ✒

FEEDBACK

HANDS-ON

Ask Monsieur
A column in which our resident UNIX expert answers questions

submitted by members.
According to Al Maki:

> Cher Monsieur,
> I have a question regarding the Internet, rather than
> Unix itself. My wife is trying to contact a woman in
> Pennsylvania doing a dissertation on a topic
> similar to my wife’s. She has been told to use
> “compose” on the mainframe (remember them?)
> with an address of blahblah@psuvm. Now, my wife
> doesn’t know how to use compose but she is familiar
> with using elm on “ccu”. I assume that “psuvm” is an
> abbreviation which compose knows how to expand,
> but if she doesn’t want to use the main frame, how can
> she find out what the true, expanded address is?
 > A bientot.
 > —
 > Al Maki <almaki@muug.mb.ca >
> Winnipeg, Manitoba

Cher Monsieur Maki,
Well, many of these mainframe systems (which Monsieur Ex

affectionately calls “les vieux dinosaures”) have traditionally been
connected to a network called BITNET. I am assuming that the
brief address you give is such an address (a BITNET node ID is a
maximum of 6 characters). Such an address is usually available for
e-mail from the Internet by simply adding the “.bitnet” domain
name to the end of the address, e.g. blahblah@psuvm.bitnet . This
sort of address will usually be forwarded to an Internet to BITNET
gateway that will know what to do with it.

As for “compose ”, Monsieur Ex would assume that it is just a
command or facility on the mainframe for composing e-mail to
send out on the network. An equivalent command is available
within Elm, or your favorite e-mail package.

Au revoir, M. Ex.

Monsieur Ex, a mysterious Frenchman who claims to be an old
editor and an expert in UNIX, awaits further mental challenges!
BTW: autobogotiphobia is the fear of becoming bogotofied — to
make or become bogus! ✒

Nominations for MUUG Board Elections
By Gilbert Detillieux

MUUG ELECTIONS

Well, October and the MUUG Annual Meeting are fast approach-
ing. One of the most important events at the annual meeting is the
election of a new board of directors.

If you feel you would like to contribute to the group by
running for a board position, please don’t hesitate to do so. Below is
the current list of nominees, followed by instructions on nominating
others.
Bary Finch Systems Eng. Rep. IBM
Rory Macleod Solutions Consultant Xerox
Roland Schneider Computer Consultant Niche Technology
Brad West Systems Engineer Freshwater Fish
Andrew Trauzzi Programmer/Analyst City of Winnipeg

Doug McLean SHL Systemhouse
Doug Shewfelt System Designer City of Winnipeg

A total of eight people will be elected. If you want to be
nominated, or nominate someone else, send a letter to the group’s
mail-box or deliver it in person to a member of the election
committee. The letter must contain the name, title, and employer of
the nominee, along with a short (100 word) biography, and must
contain the signatures of the nominee and one other member. The
letter must be received no later than September 27, 1994. This is 14
days prior to the annual meeting. If you have any questions about
the election, please give Andrew Trauzzi a call at 986-3898 during
business hours. ✒

MUUG Lines 8 September 1994

MEETINGS

Agenda
for

Tuesday, September 13, 1994, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

SIG Sideline
By Brad West, SIG Coordinator

1. President’s Welcome 7:30

3. Business Meeting 7:35
a) Old Business
b) New Business

5. Presented Topic 7:45
This month, Tim Siemens of Online Business
Systems Inc. Will be discussing object-oriented
issues within corporate environments.

4. Coffee Break and Informal Discussion 9:00

Note: Please try to arrive at the meeting between 7:15 and
7:30, to avoid disrupting the meeting in progress.

I hope everyone had fun, safe summer and is ready for the up
and coming year. We have a exciting year planned ahead.
Our Special Interest Group (SIG) is set up to combine
interest in System Administration as well as Linux to be
pursued to a greater depth then allowed by MUUG’s regular
meeting schedule. Our meetings are held the third Tuesday
of each month at 7:30 PM at ISM (400 Ellice Avenue). This
years meeting format will consist of a short topic presenta-
tion followed by a round table discussion. Some of the topics
we are hoping to present this year are: Setting up Archie/
Veronica/Gopher in Linux, Mail gateways, Setting up a
machine for general security, the ins and outs of using free
software, PPP/Slip, shell programing, setting up X in Linux,
Perl, and backups; example of “tars”, backup strategies.

If anyone is interested in being a guest speaker at a SIG
meeting or you have a specific topic of interest, let me know.
I can be reached by email <bwest@muug.mb.ca > or my work
phone is 983-0336. There is no specfic topic for next
month’s meeting — in the event that a topic is not found the
round table format will be followed. The next meeting is
scheduled for Tuesday, Sept 20, at 7:30 PM. This meeting
will again be held at ISM, 400 Ellice Avenue, behind
Portage Place. Our host is Wolfgang von Thuelen. He will be
waiting in the lobby as of 7:15 PM to let everyone in. Hope
to see you at the September meeting! ✒

Submitted By John Fenske
Written By jelson@condor.cs.jhu.edu (Jeremy Elson)

This was inspired by the recent file making its rounds on the
Net describing how to shoot yourself in the foot in a variety
of programming languages. Now, the madness is extended to
operating systems.
Unix: You shoot yourself in the foot.
DOS: You keep running up against the one-bullet barrier.
MS-Windows: The gun blows up in your hand.
Windows NT: The gun is so huge and unwieldy that you
have to keep swapping it from one hand to the other.
OS/2: The gun and the bullet aren’t speaking to each other
any more.
Mac Finder: It’s easy to shoot yourself in the foot — just
point and shoot.
AIX: You can shoot yourself in the foot with either a .38 or a .45.
IRIX: The Terminator shoots you in the foot. A T-Rex bites
your other foot.
SVR4: The gun isn’t compatible with your foot.
Minix: You learn how to shoot yourself in the foot with a
Saturday Night Special.
Linux: Generous programmers from around the world all
join forces to help you shoot yourself in the foot for free.
HURD: You’ll be able to shoot yourself in the foot Real
Soon Now.
VM/CMS: IBM shoots you in the foot.

VMS: \FOOT\ ambiguous: supply more toes.
AMIGA-DOS: The gun works pretty well, except that few
people use one and it’s impossible to find bullets.
Mach: The bullets work pretty well, but they don’t make
guns for it any more.
Cray: You shoot yourself in the foot with an Uzi.
MasPar: You shoot all of your friends’ feet simultaneously.✒

The Fortune File

☛

Coming Up
Meeting:
Next month’s meeting is scheduled for Tuesday,
October 11, at 7:30 PM. Meeting location will be the St-
Boniface Research Centre, as usual. The March meeting
topic is security. Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you’d like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<rsch@muug.mb.ca >.

Newsletter:
If you are interested in a particular topic, let me know.
I’m sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones — half
a page to one page (400 to 1000 words) would be fine.

Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again – please
submit your questions to the old guy via e-mail to
<m-ex@muug.mb.ca >. He may be old, but he’s not ready
for retirement yet!

