
Volume 6, Number 8 June 1994 S2.50

MUUG Lines
Manitoba UNIX* User Group

Newsletter of the Manitoba UNIX® User Group

Client-Server Conquers Enterprises
By John Chisholm

Client-server systems have been part of work-group and
departmental computing since the late 1980s. Now, thanks
to UNIX on large servers and advances in databases and
network management, client-server systems are being
elevated to the level of the enterprise. HP 9000s, IBM RS/
6000s, and Pyramid MIServers running Oracle and Sybase
are supporting mission-critical, client-server applications and
networks that before were handled solely by mainframes.

Many business forces are driving the re-engineering of
traditional information systems to client-server systems.
Many companies specifically mention the following forces:

• Higher employee productivity and morale. Employees are
empowered through direct access to information that lets
them make more of their own decisions. The result is a
heightened sense of self-worth, greater feeling of control
over their jobs, and overall higher morale. Ultimately,
employee efficiency and independence increase, and
personnel turnover declines.

• More competitive response to market changes. As markets
dictate new products and changes to existing products,
information systems must be able to respond and adapt at
the same pace. To avoid delaying product introductions,
information systems must be easily developed or modified
and rapidly deployed.

• Better customer service. When employees who deal
directiy with customers have the required customer
information at their fingertips, the employees provide

This Month's Meeting

Meeting Location:
Our June meeting is scheduled for Tuesday, June 14,
at 6:30 PM. This meeting will be the traditional
MUUG June BBQ. This year, Roland Schneider is
hosting it at his home in Selkirk. A map is included
in this month's newsletter.

Meeting Agenda:
Eat, drink, and be merry - but no computer talk!

more timely and appropriate service. More satisfied
customers mean repeat business and more referrals to new
customers.

• Commitment to total quality. Total quality programs
center on ensuring that employees can both get and
provide the information necessary to make quality
decisions.

Traditional information systems are changing to client-
server in two ways: without, or with, an accompanying
change in business processes. In the first case, called
information systems re-engineering (ISR), the applications
supporting existing business processes, such as inventory
control or order processing, are enhanced with client-server
techniques, but the processes themselves do not change. For
example, PCs with graphical user interfaces (GUIs) may
replace character terminals, and distributed database servers
may replace minis or mainframes, but tasks performed,
organizational charts, and head counts do not change
significantly. This approach lets enterprises enjoy the
benefits of client-server in a matter of calendar quarters,
rather than years. A minimum of buy-in from senior
management and departments throughout the enterprise is
required. •*
John Chisholm is president of John Chisholm Co. (Merdo
Park, CA), a consulting firm specializing in marketing,
strategy, alliances, and distribution for computer and
software firms. You can reach him at 570-0792® MCIMail

Inside This Issue

Newsletter Editors Ramblings 2
Presidents Comer 3
C++ Q & A 4
UNIX Q & A 5
GNU Review 6
PowerPC White Paper 7
SIG Sideline 10
June 14th BBQ Map 10

Printing Courtesy of Xerox Canada Ltd.

RAMBLINGS

Andrew Trauzzi's Newsletter?
By Andrew Trauzzl

The other day, a couple of MUUG members at work were
commenting on the MUUG newsletter. They said it funny
how almost all the articles in the newsletter were written
by, or submitted by me. Unfortunately, this is true.
Although I enjoy writing and looking for interesting articles
to include in the newsletter, I never expected to have this
"coverage."

Original Intent
When I took over as MUUG newsletter editor, Gilbert
warned me that finding people to write articles would be
more difficult than performing surgery on myself. For the
first few issues, I was becoming comfortable with the editing
routine, and didn't miss extra articles — after all, people
didn't know what to submit In the new year, however, I
found myself researching, writing, and/or typesetting almost
every article. Needless to say, I tried to find volunteers but
almost everyone didn't know what to write about, or didn't
have the time to write an article.

J. Random Hacker?
I realize that the poor economy has taken a toll on all of us.
We are all working more overtime, have less time for our

The 1993-1994 Executive

President:
Vice-President:
Treasurer:
Secretary:
Membership Sec.:
Mailing List:
Meeting Coordinator:
Newsletter editor:
Publicity Director
Past President
Information:

(or)

Bary Finch
Ramon Ayre
Rick Horocholyn
Brad West
Greg Moeller
Roland Schneider
Roland Schneider
Andrew Trauzzi
Rory Macleod
Susan Zuk
Bary Finch

Andrew Trauzzi

(W) 934-2723
(W) 947-2669
(W) 474-4533
(W) 983-0336
(H) 786-6132

1-482-5173
1-482-5173

(W) 986-3898
(W) 488-5168
(W) 989-3530
(W) 934-2723

(FAX) 934-2620
(W) 986-3898

(FAX) 986-5966

Advertising Rates

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

families, and are under more stress then ever before. I am
prone to all of the above, and barely have time to complete
the newsletter. Just last month, I submitted my final copy to
Rory for printing, He ran off 200 or so and brought them
over for stuffing. Earlier on in the week, I didn't know the
name of the speaker from Hewlett-Packard, so I inserted a
dummy name that I always notice — J. Random Hacker.
Well I almost always notice it Unfortunately, my error
caused Rory to reprint and stuff all 200 newsletters by hand.
(Thanks Rory!)

The Point
I certainly don't want my comments interpreted as whining
and blathering, because I really enjoy editing this newsletter.
Instead, I would like to ask all of you to consider writing or
submitting an article for the newsletter. The next issue
comes out in September, so the deadline for article submis
sion is August 21st. That gives all of you over 2 months to
find something interesting to write about Hopefully, next
year's newsletter will reflect the interests of the group, and
not just one individual. In any case, have a great summer,
and I will see you in September. •*

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

Group Information
The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter's mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

MUUG Lines 2 June 1994

mailto:editor@muug.mb.ca
mailto:membership@muug.mb.ca

PRESIDENT'S CORNER

Reflections...
By Bary Finch

... or is that "refractions"? Oh well. I'm just looking back on my
year as MUUG President I guess it would be refractions if I left a
lot of myself behind. I seem to still be complete, so reflections may
be the better term.

I have most certainly enjoyed this last year as MUUG
President I have gotten to know so many more of you before and
after meetings, and through the questions that you forward to me
via phone or email. Of course I can't really answer anything (it's
tough being a figurehead) and I pass it on to the people that
REALLY know what's going on.

Just kidding. Although I have gotten to know much more
about MUUG over the last year. All the people in the executive
from previous years make it easy to understand how MUUG runs,
and what can be done to improve it And all the new people bring in
fresh ideas that keep our group following the leading trends in the
industry.

I feel we have managed to make significant change over the
last year. We now have a formal schedule of the year's presenta
tions prepared early, and make sure we arrange for the best possible
speakers from whatever the best source is. This source is now often
one of the many vendors, both in town and out of town.

Our relationships with the vendors, and with the overall
Winnipeg business community, has developed extensively with our
Corporate Sponsorship program. This has established much more
prominence for MUUG with local businesses. And they have shown
their belief in us with their much appreciated support

One reflection (there's that word again) of our effort to use the
support of the sponsors, and return it to the local community, is in

the kind of presentations that we are providing. Our topics are of
interest for many of the local data processing professionals, judging
by the range of people that attend our meetings.

We also are still providing the information that the casual user
fmds interesting. With the strong representation in our membership
that the hobbyist UNIX user represents, MUUG continues to focus
on what kinds of topics are appropriate for all UNIX users.

I would like to extend my thanks for everyone who attended
the last meeting, and took the time to fill out our questionnaire on
what topics you find interesting for the coming year. Without your
input the MUUG executive has to take its best guess as to what you
want to see presented at the meetings. Thanks again for helping us
provide what you want Another great development has been the
Special Interest Group (SIG) for Linux and System Administration.
This has continued strongly over the last year, with a number of
technical presentations being provided. We will work to deliver
more presentations on System Administration topics, with a focus
on showing how it can be implemented in Linux.

If you've looked outside lately, you'll notice it's summer.
Although it was 2 degrees the morning I wrote this. But we are
officially into doing summer activities now, so it must be time for
the annual MUUG barbecue. Elsewhere in this issue are the details
of how to get to the barbecue. Please remember it starts at 6:30, not
7:30, so no need to stay home starving and waiting to eat!

With the barbecue, MUUG again ends its agenda for the
summer, and we take July and August off. Don't fear, we'll be back
for the September meeting, once again at the StBoniface Research
Center. In the mean time, have a great summer! •*

CORPORATE SPONSORS

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

Whpi HEWLETT
mL'fiM PACKARD

A
XEROX

The
Document
Company

Great-West Life Assurance
Company

•pTANDEM COMPUTERS

MUUG Lines 3 June 1994

PROGRAMMING

C++ Q&A
By Marshall P. Cline

Question 34: What if I forget the' []' when 'delete'ing arrays
allocated via 'new X[n]'?
Life as we know it suddenly comes to a catastrophic end.

It is the programmer's —not the compiler's— responsibility to
get the connection between new [] and delete [] correct If you get
it wrong, neither a compile-time nor a run-time error message will
be generated by the compiler.

Heap corruption is a likely result
SECTION 9: Debugging and error handling

Question 35: How can I handle a constructor that fails?
Constructors (ctors) do not return any values, so no returned error
code is possible. The best way to handle failure is therefore to
'throw' an exception.

If your compiler doesn't yet support exceptions, several
possibilities remain. The simplest is to put the object itself into a
'half baked' state by setting an internal status bit Naturally there
should be a query ('inspector') method to check this bit, allowing
clients to discover whether they have a live object Other member
functions should check this bit, and either do a no-op (or perhaps
something more obnoxious such as 'abort ()') if the object isn't
really alive. Check out how the iostreams package handles attempts
to open nonexistent/illegal files for an example of prior art
Question 36: How can I compile-out my debugging print
statements?
This will NOT work, since comments are parsed before the macro
is expanded:

#ifdef DEBUG_0N
idefine DBG

#else
idefine DBG //

iendif DBG cout « foo;
This is the simplest technique:

#ifdef DEBUG__0N
#de fine DBG{anything)

ielse
idefine

iendif
Then you can say:

//...
DBG(cout « *the value of foo is * « foo « *\n');

Any commas in your 'DBG ()' statement must be enclosed in a ' ()':
DBG(i=3, j=4};//<— C-preprocessor error message generated
DBG(i=3; j=4);//<-- ok

There are also more complicated techniques that use variable
argument lists, but these are primarily useful for 'print f ()' style
(see question on the pros and cons of <iostream. h> as opposed to
<stdio. h> for more).

SECTION 10: Const correctness
Question 37: What is 'const correctness9?
A program is 'const correct' if it never mutates a constant object
This is achieved by using the keyword 'const'. Ex: if you pass a
String to a function 'f {)', and you wish to prohibit 'f {)' from
modifying the original String, you can either pass by value:
void f(String s) {/*...*/}
or by constant reference:
void f(const Strings s) {/*...*/}

anything

DBG(anything) /*nothing*/

or by constant pointer:
void f(const String* sptr) { /*...*/ }
but not by non-const ref:
void f(Strings s) {/*...*/}
nor by non-const pointer
void f(String* sptr) { /*. . .*/ }

Attempted changes to V within a fh that takes a 'const
Strings' are flagged as compile-time errors; neither run-time space
nor speed is degraded.
Question 58: Is 'const correctness' a good goal?
Declaring the 'constness' of a parameter is just another form of type
safety. It is almost as if a constant String, for example, 'lost' its
various mutative operations. If you find type safety helps you get
systems correct (especially large systems), you'll find const
correctness helps also.
Short answer: yes, const correctness is a good goal.
Question 39: Is 'const correctness' tedious?
Type safety requires you to annotate your code with type informa
tion. In theory, expressing this type information isn't necessary —
witness untyped languages as an example of this. However in
practice, programmers often know in their heads a lot of interesting
information about their code, so type safety (and, by extension,
const correctness) merely provide structured ways to get this
information into their keyboards.
Short answer: yes, const correctness is tedious.
Question 40: Should I try to get things const correct 'sooner' or
iater'?
Back-patching const correctness is very expensive. Every 'const'
you add 'over here' requires you to add four more 'over there'. The
snowball effect is magnificent — unless you have to pay for it
Long about the middle of the process, someone stumbles on a
function that needs to be const but can't be const, and then they
know why their system wasn't functioning correcdy all along. This
is the benefit of const correctness, but it should be installed from
the beginning.
Short answer Const correctness should not be done retroactively!!
Question 41: What is a 'const member function'?
A const member function is a promise to the caller not to change
the object Put the word 'const' after the member function's
signature;ex: class X { / / . . . void f() const; };

Some programmers feel this should be a signal to the compiler
that the raw bits of the object's 'struct' aren't going to change,
others feel it means the abstract (client-visible) state of the object
isn't going to change. C++ compilers aren't allowed to assume the
bitwise const, since a non-const alias could exist which could
modify the state of the object (gluing a 'const' ptr to an object
doesn't promise the object won't change; it only promises that the
object won't change via that pointer).

I talked to Jonathan Shopiro at the C++AtWork conference,
and he confirmed that the above view has been ratified by the
ANSI-C++ standards board. This doesn't make it a 'perfect' view,
but it will make it 'the standard' view.

Dr. Marshall P. Cline is the founder and President of Paradigm
Shift, Inc., a firm that specializes in on-site training for C++, OOD,
OOA, consulting, and reusable/extensible C++ class libraries. For
more information, send e-mail to "info@parashift.com". •*

MUUG Lines 4 June 1994

mailto:info@parashift.com

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi
Question 1: How do I find die creation time of a file?
You can't — it isn't stored anywhere. Files have a last-modified
time (shown by "Is -1"), a last-accessed time (shown by "Is -lu")
and an inode change time (shown by "Is -1c"). The latter is often
referred to as the "creation time99 — even in some man pages — but
that's wrong; it's also set by such operations as mv, In, chmod,
chown and chgrp.
The man page for "stat (2}" discusses this.
Question 2: How do I use "rsh" without having the rsh hang
around until the remote command has completed?
The obvious answers fail:

rsh machine command &

or
rsh machine 'command &'

For instance, try doing
rsh machine 'sleep 60 &'

and you'll see that the 'rsh' won't exit right away. It will wait 60
seconds until the remote 'sleep' command finishes, even though
that command was started in the background on the remote
machine. So how do you get the 'rsh' to exit immediately after the
'sleep' is started?
The solution — if you use csh on the remote machine:
rsh machine -n 'command >&/dev/null </dev/null &'
If you use sh on the remote machine:
rsh machine -n 'command >/dev/null 2>&1 </dev/null &'
Why? "-n" attaches rsh's stdin to /dev/null so you could run the
complete rsh command in the background on the local machine.
Thus "-n" is equivalent to another specific "< /dev/null".

Furthermore, the input/output redirections on the remote
machine (inside the single quotes) ensure that rsh thinks the session
can be terminated (there's no data flow any more.)
Note: The file that you redirect to/from on the remote machine
doesn't have to be /dev/null; any ordinary file will do.

In many cases, various parts of these complicated commands
aren't necessary.
Question 3: How do I truncate a file?

The BSD function f truncate {) sets the length of a file. Xenix
— and therefore SysV r3.2 and later—has the chsize {) system
call. For other systems, the only kind of truncation you can do is
truncation to length zero with creat (} or
open{..., OJTRUNC).
Question 4: How do I set the permissions on a symbolic link?
Permissions on a symbolic link don't really mean anything. The
only permissions that count are the permissions on the file that the
link points to.
Question 5: How do I "undelete" a file?
Someday, you are going to accidentally type something like "rm *
. f oo", and find you just deleted "*" instead of "*. f oo". Consider it
a rite of passage.

Of course, any decent systems administrator should be doing
regular backups. Check with your sysadmin to see if a recent
backup copy of your file is available. But if it isn't, read on.

For all intents and purposes, when you delete a file with "rm" it
is gone. Once you "rm" a file, the system totally forgets which
blocks scattered around the disk comprised your file. Even worse,
the blocks from the file you just deleted are going to be the first
ones taken and scribbled upon when the system needs more disk

space. However, never say never. It is theoretically possible if you
shut down the system immediately after the "rm" to recover
portions of the data. However, you had better have a very wizardry
type person at hand with hours or days to spare to get it all back.

Your first reaction when you "rm" a file by mistake is why not
make a shell alias or procedure which changes "rm" to move files
into a trash bin rather than delete them? That way you can recover
them if you make a mistake, and periodically clean out your trash
bin. Two points: first, this is generally accepted as a bad idea.
You will become dependent upon this behaviour of "rm", and you
will find yourself someday on a normal system where "rm" is really
"rm", and you will get yourself in trouble. Second, you will
eventually find that the hassle of dealing with the disk space and
time involved in maintaining the trash bin, it might be easier just to
be a bit more careful with "rm". For starters, you should look up
the "- i" option to "rm" in your manual.

If you are still undaunted, then here is a possible simple
answer. You can create yourself a "can" command which moves
files into a trashcan directory. In csh (1) you can place the
following commands in the ". login" file in your home directory:

alias can 'mv \!* -/.trashcan' # junk file(s) to trashcan
alias mtcan 'rm -f -/.trashcan/*' # irretrievably empty trash
if (! -d -/.trashcan) mkdir -/.trashcan
ensure trashcan exists

You might also want to put a:
rm -f -/.trashcan/*

in the ".logout" file in your home directory to automatically empty
the trash when you log out (sh and ksh versions are left as an
exercise for the reader.)

MTTs Project Athena has produced a comprehensive delete/
undelete/expunge/purge package, which can serve as a complete
replacement for rm which allows file recovery. This package was
posted to comp.sources.misc (volume 17, issue 023-026)
Question 6: How can a process detect if it's running in the
background?
First of all: do you want to know if you're running in the back
ground, or if you're running interactively? If you're deciding
whether or not you should print prompts and the like, that's
probably a better criterion. Check if standard input is a terminal:

sh: if [-t 0] ; then . . . fi C: if(isatty(O)) { . . . }
In general, you can't tell if you're running in the background.

The fundamental problem is that different shells and different
versions of UNIX have different notions of what "foreground" and
"background" mean — and on the most common type of system
with a better-defined notion of what they mean, programs can be
moved arbitrarily between foreground and background!

UNIX systems without job control typically put a process into
the background by ignoring SIGINT and SIGQUTT and redirecting
the standard input to "/dev/null"; this is done by me shell.

Shells that support job control, on UNIX systems that support
job control, put a process into the background by giving it a process
group ID different from the process group to which the terminal
belongs. They move it back into the foreground by setting the
terminal's process group ID to that of the process. Shells that do
not support job control, on UNIX systems that support job control,
typically do what shells do on systems that don't support job
control. •*

MUUG Lines 5 June 1994

comp.sources.misc

HANDS-ON

GNU Review
By Peter Graham

Still improving — I'll beat the procrastination thing yet I'm gmake requirements
writing this article one whole week before the deadline. Yes, Gnu make runs on a wide variety of platforms. It likes to be
I am looking for a pat on the back, (ok Peter—pat, pat, pat compiled with gcc but this is not a hard and fast requirement
— e<L) Alternatively, someone can "buy" me a beer at the gmake installation
BBQ. Don't get too generous though because I'm only Guess what? Its a Gnu install so... ". /configure; make;
doing this because I will be out of town when the article is make install" and you're done. Its as easy as that! Some
really due. ;-> people may want to keep their old make around (perhaps for

Gnu make - A better make program sentimental reasons ;->). If so, it's easy to install Gnu make
This month we'll talk about Gnu make. For convenience and ^ gmake either manually after the fact or by editing the
to avoid confusion, we'll refer to it as 'gmake'. Gnu make is Makefile. Note that if you do this, you will probably also
an enhanced version of the standard make utility which is w a n t to fix up the placement of the man page and the info
based on the version of make which is distributed with the files.
latest Berkeley release. It offers many features not available gmake Usage
in older makes and incorporates the best of the features from Using gmake can be as easy as using make. Thus, if you
many makes. simply have an existing make file, you say "make". On the

Conventional make and gmake perform the same basic 0ther hand, if you want to create your own makefiles you can
function. Quoting from the online info that comes with u s e au 0f gmake's features. The space limitations (not to
gmake: mention the time limitations) preclude my discussing the use
"The 'moke' utility automatically determines which pieces of Qf the many features of gmake. A hint of what can be done is
a large program need to be recompiled, and issues com- given in the section on gmake features. See the info files (via
mands to recompile them. This manual describes GNU the info program which is also available on prep. ai .mit. edu)
'make', which was implemented by Richard Stallman and for detailed information.
Roland McGrath. GNU'make' conforms to section 6.2 of gmake Summary
'IEEE Standard 1003.2-1992' (POSIX.2). Name make

You can use 'make' with any programming language Description Replacement for standard Unix
whose compiler can be run with a shell command. Indeed, make (derived from the new
'make' is not limited to programs. You can use it to describe Berkeley make). Tool to help
any task where some files must be updated automatically automate the compilation of
from others whenever the others change." large software systems (among
The difference is gmake allows you to do more complicated other things).
(and useful) things easily. Archive Loc'n prep.ai.mitedu:/pub/gnu/make-

gmake features 3.70. tar.gz /pub/gnu/make-
Iwill now describe what makes gmake better than your cloc-3.70. tar. gz
average make program. Archive size 427221 bytes (code) 253635
• VPATH variable — An undocumented features from bytes (doc'n)

SysV make. Allows large software systems to be housed in Approx Space to Install 3.5MB
multiple directories easily without having to explicitly Time to Install (Sparc-1) 7.5 minutes
specify relative pathnames. VPATH says where to search pr0S Free, small, and easy to install.
for files involved in rules. (as always)

• included makefiles — Makefiles may include other • Significant extensions to
makefiles. This makes it easy to write "libraries" of existing makes,
makefiles containing actions for specific purposes. • Backwards compatible with

• integrated environment variables — Make variables may older makes (mostly),
be read from the environment. Cons • Relatively significant

• passed options — Options to make are automatically re-learning curve for people
passed through the variable MAKEFLAGS to recursive u sed to old makes...but
invocations of make. • extensive "info" files

• numerous builtin variables — Builtin variables exist for come with it (I know, I know,
many useful things. "What's a PRO doing in with

• pattern rules — Rules which do pattern matching using ' %'. the CONs???")
• parallelism — To enhance the speed of large rebuilds See you all at the BBQ! That's it for this year. E-mail to

and much, much, more! pgraham@cs.umanitoba.ca. •*
MUUG Lines 6 June 1994

mailto:pgraham@cs.umanitoba.ca

INDUSTRY

The PowerOpen White Paper
Part 2 — The PowerOpen Association

Submitted by Keri Gustafson through Bary Finch

Last month* s article focused on the hardware behind the
PowerPC movement, the PowerPC RISC chip. This month's
article will examine the structure that has been built around
the PowerPC chip — the PowerOpen association.

Introduction
In 1991, the Apple, IBM and Motorola alliance announced
the PowerOpen™ Environment initiative — the computing
solution for the '90s and beyond. Since that time, those
companies — along with Bull, Harris Corporation™,
Tadpole Technologies™ and THOMSON-CSF™ — have
been working to realize that initiative by defining an envi
ronment responsive to both customer and industry demands.
Building on a foundation of open systems conformance, the
environment is expected to give customers access to a large
base of applications.

The PowerOpen Environment can be described as the
combination of any PowerPC Architecture compliant
processor together with its system software that is designed
to help enable application binary compatibility across
different vendors' PowerPC platforms. In addition, the
PowerOpen Environment incorporates the hardware, system
software, and application programming interfaces required to
advance the goal of running both UNIX™ and Macintosh™
applications presented with the "look and feel" that users
want

Users from either the UNIX or Macintosh worlds would
find their applications working in familiar ways. Whatever
the interface, users would see and manipulate a common file
structure. Data from either type of application could be cut
and pasted to the other. The dream of running UNIX and
native Macintosh applications on the same platform has
moved closer to reality with the introduction of the
PowerOpen Environment

For UNIX users, the PowerOpen ABI will provide
platform binary compatibility based upon leading edge
hardware technology and software specifications. The goal
of the PowerOpen specification is to enable binary applica
tions to run across PowerOpen compliant systems from
many vendors.

The PowerOpen Operating Environment is thus the next
evolutionary step for both UNIX and Macintosh computing.
To sum it up, the environment plans to provide a standards-
driven, open environment for tomorrow's users today.

Endorsements from Vendors
Numerous vendors have already announced support for
PowerOpen. System suppliers like Apple, Bull, Harris, IBM,
Tadpole Technology and THOMSON-CSF are already
committed to the PowerOpen Environment. As recognition
of the PowerOpen grows, other suppliers are also expected to
announce their support System vendors, however, aren't the
only ones voicing support for the PowerOpen Environment -
software developers are also joining the ranks.

Several companies plan for their operating systems to
comply with the Application Binary Interface(ABI) for the
PowerOpen Environment IBM and Bull have announced
plans to market their compliant operating system as AJXJ
6000T, and THOMSON-CSF as UNI/XT(TM). In addition,
Apple expects to market a compliant operating system. Each
company will add its own extensions to their PowerOpen
compliant implementation.

PowerOpen Association
The PowerOpen Association, a group organized and char
tered to the advancement of the PowerOpen environment,
supports the PowerOpen specification which includes an
application binary interface, API (application programming
interface; XPG4, XTT, XNFS and the PowerPC RISC
microprocessor). The PowerOpen Environment is designed
to help enable software developers to produce "shrink-
wrapped" applications that will run on multiple platforms.
The ABI documentation will cover the PowerOpen Environ
ment basics, porting and migration, Macintosh Application
Services, PowerPC Architecture, and Power PC 601 User's
manual.

Foundations of the PowerOpen Environment
Applications expected for the PowerOpen environment are
comprised of many existing applications as well as new
applications that will likely be developed to fully exploit the
PowerOpen specification's potential.

The PowerOpen Environment will allow users to work
simultaneously with graphical applications based on a
Macintosh or OSF/Motif-based interface, and with character-
based applications. No matter what the user interface, each
application will ride on the PowerOpen Environment which
is platform and I/O independent The goal of the PowerOpen
Environment specification, is to enable software developers
not to have to take platform-specific functions and I/O bus
dependencies into consideration. Thus, software developers
could concentrate their efforts on the functionality of end-
user applications, without the trouble of dealing with
hardware-specific issues.

The PowerOpen Environment is designed to help enable
software vendors to produce "shrink-wrapped software" and
powerful server systems. An important goal of the
PowerOpen Environment is to offer users the same conve
nient access to software that Macintosh and PC-compatible
users have enjoyed for years.

The Hardware: The PowerPC Behind the
PowerOpen Environment

The PowerOpen Environment runs on the evolutionary,
high-performance RISC microprocessor technology:
PowerPC. The PowerPC Architecture, developed by IBM
and Motorola with input from Apple, derives from IBM's
successful Performance Optimized With Enhanced RISC
(POWER™) architecture. »

MUUG Lines June 1994

The PowerOpen White Papers

The PowerPC chip makes use of both IBM and
Motorola's world-class chip design and fabrication tech
niques and facilitates a truly scalable processor family.
Consequently, the PowerPC microprocessor is designed to
support computers ranging from pen-based systems to
desktop PCs to multiprocessing servers to multiprocessor
super computers, including real-time systems and server
systems. The 601 and 604 microprocessors will give desktop
designers a chip for office computing and will have exten
sive support for multiprocessing. At the same time, the 603
microprocessor will give system suppliers the chip needed
for low-end desktop computers and laptops. The 620
microprocessor will supply the muscle needed for high-end
workstations, servers, and multiprocessor systems.

Application Binary Interface (ABI)
The Application Binary Interface (ABI) defines the structure
of the application in the PowerOpen Environment This
includes such key definitions as loading and linking, conven
tions, object formats, the execution environment, networking
infrastructure, and installation and packaging information.

Application Programming Interface (API)
The Application Programming Interface defines the set of
system calls, library functions, header files, mmmmm_
commands and utilities that an application
developer is allowed to use to develop a compli
ant application. IS Vs are mainly concerned with
programming to the API. Underlying the
PowerOpen API are key industry standards such
as:

•XPG4
•XNFS
• xn
•X11R5
•AES — -
•POSK

The Environment definition will define all the elements that
developers need to create applications that will install,
execute, and run unmodified on multiple platforms conform
ing to the PowerOpen Environment

The networking API provides the commands and
parameter-passing definitions for inter-system operations.
Both streams and sockets are used for networking in the
PowerOpen Environment TCP/IP is one of the underlying
protocols used for networking, but any streams-and-sockets-
compatible networking protocols could be used. We
anticipate that our members will submit candidates for future
inclusion. System management in the PowerOpen Environ
ment will initially consist of install and update functions for
applications.

The windowing extensions for the PowerOpen Environ
ment consists of a window manager, application commands
and parameters, and the communication protocol. The
PowerOpen windowing system is derived from the X
Window System Release 11 Version 5 (X11R5), which
provides a client/server based graphical windowing system.

Macintosh Application Services Apple Macintosh

"The PowerOpen
Environment

incorporates a
rich set of open

computer
standards"

applications run through the Macintosh application-services
extension. Macintosh Finder, the Macintosh desktop creator
and manager, runs within a single X Window. Both
PowerPC and 680x0 Macintosh applications are expected to
run simultaneously from the same system.

The Macintosh Finder plans to provide the familiar
Macintosh Desktop Graphical User Interface within an X
Window on the PowerOpen system. All files (including non-
Macintosh documents and applications) would appear as
icons; users would simply double-click on a Macintosh or
UNIX icon to open a file or launch an application. This
brings Macintosh point-and-click simplicity to UNIX
application users. The Finder will be based on Macintosh
System 7 system software.

The Macintosh Application Engine is planned as the
heart of the Macintosh Applications Services. The Macintosh
Application Engine plans to maximize the speed of running
Macintosh 680x0 applications on a PowerOpen system. All
Macintosh 680x0 applications are intended to be supported
by an emulator, which interprets the 680x0 code to instruc
tions usable by the PowerOpen platform. The system is
designed to minimize the time spent in the emulator, and
_ _ ^ m maximize the time spent executing application

commands in native PowerOpen code. The goal
is for Macintosh application performance to be
much faster.

Macintosh applications — both Macintosh
680x0 applications, and Macintosh PowerPC
applications - plan to interact with the
PowerOpen system layer through the Macintosh
Toolbox, an interface written in native
PowerOpen code. Since most Macintosh 680x0
applications spend up to 90% of their processing

•"•""—~"" time in the Macintosh Toolbox, this should
greatly improve the speed of running Macintosh applications
on the PowerOpen platform.

International Language Support
The PowerOpen Environment incorporates a rich set of open
computer standards including international language support
Character representation is handled not only by UNIX's
standard 7-bit ASCII, but also by the ISO 8859 family of 8-
bit extended ASCII code sets, as well as the de facto stan
dard PC code set (IBM-850). For Asian languages, character
encodings are supported by the Extended UNIX Code set.
Extended UNIX Code support is also provided for Chinese,
Japanese, and Korean characters.

Besides this extensive character support, language-
customs and conventions support is provided for the world's
most widely used languages, including Chinese, English,
French, German, Japanese, and Spanish. Additionally, the
same tools that are used to develop the language support are
provided as a part of the environment. This feature allows
further customization of customs and conventions. Option
ally, software developers may also choose to develop
additional language support. What this all means is that the
PowerOpen Environment, from the very beginning, is <•*

MUUG Lines 8 June 1994

The PowerOpen White Papers

designed for internationalization and not limited to one
language.

XCOFF In addition to application development pro
gramming considerations, binary compatibility requires
definition of a consistent output format The PowerOpen
Environment defines this to be the extended common object
file format (XCOFF). XCOFF provides the object file
definition for applications. Moreover, XCOFF encompasses
shared libraries and dynamic linking. This means that
software developers can deliver compact, memory-efficient
programs.

Benefits for Software Developers
The PowerOpen ABI specification gives the environment
several advantages over other operating systems and envi
ronments. First, because of its open programming interface,
software developers will find the PowerOpen Environment
both attractive and easy to write to. A related factor in
PowerOpen* s favor is that, unlike all other mainstream
operating environments, the PowerOpen Environment is
extendible through an open process. Software developers
will not be caught flat by unannounced changes.

The PowerOpen Environment goal of = = = = =

cushioning software developers from having to
deal with hardware specifications also is another
reason it is easy for them to write to the
PowerOpen specification. Its scalability and its
reliance on industry standards are factors that
weigh heavily in PowerOpen favor. The
PowerOpen operating environment has obvious
advantages for software developers will help to
encourage its quick adoption as the environment
of choice for software developers, large and :
small.

The System Verification Test Suite (SVTS) will verify
that the platform is compliant with the PowerOpen specifica
tion. This will ensure that IS Vs who develop to the
PowerOpen Environment definition need only develop a
single port to have their application run on multiple vendor's
PowerOpen compliant systems. This will result in signifi
cant savings of reduced porting and maintenance costs.

The Future
The PowerOpen operating environment offers many advan
tages that will help ensure its success. It is derived from
proven technology and is supported by major suppliers. It
expects to give customers access to a large base of applica
tions. The PowerOpen specification is designed with the goal
of supporting "shrink-wrapped" applications across compat
ible platforms, making it attractive to applications-software
developers. It is built to be upwardly compatible and the
scalable architecture will allow the PowerOpen environment
to expand to meet computing demands well into the next
century. The first PowerPC processor is available today and
will be quickly followed by the rest of the single-chip
processors that span the full range from 32-bit (energy

efficient, cost effective) chips to 64-bit multi-processor
enabled chips.

Emerging needs are met by having designers of tech
nologies complying with the ABI committed to the continu
ous improvement of both its hardware and software ele
ments. This continuing evolution will be accomplished by
maintaining constant communications with all PowerOpen
Environment adopters, system vendors, software developers,
and customers, through their participation in the PowerOpen
Association.

Promoting application availability on the PowerOpen
Environment is another goal of the PowerOpen Association.
The PowerOpen Environment is designed to be able to run
DOS, Microsoft Windows, OS/2 and other applications
through third party software vendor's simulators. As
technologies such as binary-to-binary converters mature,
however, these applications may be ported to run in native
mode on the PowerPC platforms.

The PowerOpen Environment will not evolve merely in
a reactive fashion. The PowerOpen Association's Technical

Working Groups will be constantly planning the
_ _ PowerOpen specification's evolution two

versions up the road. Enhancements to the
PowerOpen Environment will be recommended
through the PowerOpen Association.

As the PowerOpen operating environment
evolves, the maintenance of binary compatibil
ity with existing hardware and software will be
an important consideration and a primary goal
of the Association. The Association will also
work with standards bodies like X/Open as

— appropriate. The PowerOpen Association will
review new technologies for inclusion in the

PowerOpen Environment such as object-oriented frame
works and multimedia API's. PowerOpen is truly a system
for today and tomorrow.

The PowerOpen Association
25 Burlington Mall Road
Burlington, MA 01803

Phone: (800) 457-0463 U.S & Canada
(617)273-1550 International

Portions of this document were provided by International
Business Machines.
PowerOpen and the PowerOpen logo are trademarks
licensed to the PowerOpen Association, Inc.
PowerPC is a registered trademark of International Business
Machines Corporation.
OSF/Motif are trademarks of Open Software Foundation,
Inc.
Apple and Macintosh are registered trademarks of Apple
Computer, Inc.
UNIX is a registered trademark of Unix System Laboratories •*

'The PowerOpen
Environment is

extendible
through an open

process"

MUUG Lines 9 June 1994

MEETINGS

Annual MUUG Barbecue
June 14,6:30 pm

Host: Roland Schneider
phone: 1-482-5173

Where:The Schneiders'
8483 Henderson Hwy
N. (PR 204)
Across from The
Strawberry Patch
About 20 minutes from
the Perimeter
(See map)

When: Tuesday, June 14, 6:30
pm
(1 hour earlier than our
normal meetings)

Bring: Meat to cook
Beer
Lawn chairs

RSVP: Roland Schneider
1-482-5173 (days and
evenings)
e-mail: <rsch@muug.mb.ca>
or
Andrew Trauzzi
986-3898 (days)

To Selkirk

PTH9
(Main St)

PTH59

Map is NOT drawn
to scale

We will supply chips and other nibble food, soft
drinks, salads, and a cake, (and insect repellent if
necessary). Spouses or significant others, and
children, are also welcome. Bring a swimsuit if
you want to take a dip in our pond. •*

Siq Sideline
By Brad West,

For our last SIG meeting of the season (May 17th), we had a good
turnout The evening started with a surprise presentation by
Michael Doob. Michael demonstrated his working Linux system
installed on a 386sx 16 MHz laptop with 4 MB of ram and a 20
MB hard drive. He did a run- through of the installation process,
and the system worked amazingly well. Linux was installed to a
bare minium and took up only 8 MB of the hard disk and had a 4
MB swap disk. This left the system with 40% of the hard drive for
applications (8 MB). The system was demonstrated working with
TeX., and did a good job (considering the hardware limitations).
Michael demonstrated the installation process he used for this
system by using the bare boot disk, file system disk, and the al —
a3 disks. The Linux distribution used on this system was
Slackware 1.2.0. The rest of the evening continued with the round
table format

That's it for this year, I hope it was a enjoyable and learning
experience for all. I would like to give a special thanks to ISM and
Wolfgang von Thuelen for the use of ISM premises for our
meetings this year. Also, thanks to all who presented topics this
year. We plan to have more presentation setup for next year's

Sig Coordinator
meeting, so if anyone is interested in being a guest speaker at a SIG
meeting, or you have a specific topic of interest, let me know. I can
be reached by email <bwest@muug .mb. ca> or my work phone is
983-0336. The presentation for next year's meeting is TB A. The
next meeting is tentatively scheduled for Tuesday, September 13, at
7:30 PM. This meeting will again be held at ISM, 400 Ellice
Avenue, behind Portage Place. Our host is Wolfgang von Thuelen.
He will be waiting in the lobby as of 7:15 PM to let everyone in.
Wish everyone a great summer and hope to see you next year. •*

Coming Up

Meeting:
September's meeting is scheduled for Tuesday, Septem
ber 13, at 7:30 PM. Meeting location will be the St-
Boniface Research Centre, as usual. Stay tuned for
details, and have a great summer!

MUUG Unes 10 June 1994

mailto:rsch@muug.mb.ca

