
MUUG Lines 1 April 1994

Volume 6, Number 6

Printing Courtesy of Xerox Canada Ltd.

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX ® User Group

April 1994 $2.50

Sound Bytes
By Arne Grimstrup and Doug Shewfelt

Meeting Location:
Our next meeting is scheduled for Tuesday, April
12, at 7:30 PM. Once again, the meeting will be held
in the auditorium of the St-Boniface Hospital
Research Centre, just south of the hospital itself, at
351 Taché. You don’t have to sign in at the security
desk — just say you’re attending the meeting of the
Manitoba UNIX User Group. The auditorium is on
the main floor, and is easily found from the en-
trance.

Meeting Agenda: See inside for details.

News of the Computer World you would rather not know
about!

Phillippe Kahn of Borland was overheard to say “Look, we
bought Paradox from Ansa and DBase from Ashton-Tate. If
we don’t find another database manufacturer soon whose
name starts with ‘A’, we’re going to have to start buying
from the ‘B’s!”

In a surprise move yesterday, IBM announced that they were
changing the name of the latest release of their mainframe
database system from “IMS” to “Advanced IMS”. All
functions associated with developing and maintaining the
database will be transferred to a new subsidiary company
called “Advanced IMS Ltd.”. When asked about the
prospects of the aging database system, an IBM spokesper-
son responded “Don’t worry — we have great plans for this
puppy! We know were we can make some quick money
with it!”

William Gates called a sudden news conference last Satur-
day, where he announced “Ok, you’re right! I screwed up!”
and gave ownership of Microsoft to Richard Stallman.

The Software Foundation for Law and Government has
announced the release of its new “ClipperNet” architecture.
The Foundation (which is funded entirely by the U.S.
National Security Agency) says that the architecture is a

convenient encryption system that automatically forwards a
copy of all transactions to the NSA offices.

Microsoft has rounded out its financial offering by pre-
announcing “Fraud for Windows.” “We think that this will
open a whole net market for us,” said a Microsoft spokesper-
son. Also planned are “Tax Evasion for Windows”, “Grand
Larceny for Windows”, and “Avoiding Anti-Trust Suits for
Windows”.

Complaining that C code is too difficult to read, Kenneth
Iverson has ported the Unix kernel into a single line of
APL.

MIT researchers into Object Oriented Programming have
discovered that methods are not inherited, but are instead
socialized by their peer methods.

The SAA Association (Students Against Acronyms), had
created its first annual top 5 worst computer industry
acronyms of the year. Here is the list:

5. POWER — Try not to choose the acronym first!
4. WABI — First coined by Elmer Fudd!
3. WYSIWYG — Now we are really geeking out!
2. EBCDIC — Not new, but loathsome!
and finally...
1. PCMCIA — Acronyms are supposed to help you

remember the words right? ✒

Manitoba UNIX User Group

Newsletter Editor’s Ramblings 2
President’s Corner3
C++ Q & A ...4
A Concise Guide to UNIX Books 5
UNIX Q & A ...6
GNU Review..7
A Day in The Life of a Grad Student 8
April Speaker Topic and Biography. 8
SIG Sideline ..10
April 12th Meeting Agenda 10

MUUG Lines 2 April 1994

President: Bary Finch (W) 934-2723
Vice-President: Ramon Ayre (W) 947-2669
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Brad West (W) 983-0336
Membership Sec.: Greg Moeller (H) 786-6132
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-3898
Publicity Director Rory Macleod (W) 488-5168
Past President Susan Zuk (W) 989-3530
Information: Bary Finch (W) 934-2723

(FAX) 934-2620
(or) Andrew Trauzzi (W) 986-3898

(FAX) 986-5966

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August. Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

RAMBLINGS

Some Quick Hacks
By Andrew Trauzzi

In keeping with April’s festivities, I have compiled some of my
favourite definitions from The New Hacker’s Dictionary. If you
enjoy the following quips, The New Hacker’s Dictionary is
available at many fine bookstores (ISBN 0-262-68079-3). Some
definitions © Eric S. Raymond, 1993.
heisenbug /hi:´zen-buhg/ [from Heisenberg’s Uncertainty Principle
in quantum physics] n. A bug that disappears or alters its behaviour
when one attempts to probe or isolate it. In C, nine out of ten
heisenbugs result from uninitialized auto variables.
obi-wan error /oh´bee-won`er´er/ [RPI, from ‘off-by-one’ and the
Obi-Wan Kenobi character in “Star Wars”] n. A loop of some sort
in which the index is off by 1. Common when the index should
have started from 0 but instead started from 1.
walking drives n. An occasional failure mode of magnetic-disk
drives back in the days when they were huge, clunky washing
machines. These old dinosaur parts carried terrific angular
momentum; the combination of a misaligned spindle or worn
bearings and stick-slip interactions with the floor would cause them
to ‘walk’ across a room, lurching alternate corners forward a couple
of millimeters at a time.

Walking could also be induced by certain patterns of drive
access (a fast seek across the whole width of the disk, followed by a
slow seek in the other direction). Some bands of old-time hackers
figured out how to induce disk-accessing patterns that would do this

to particular drive models and held disk-drive races.
COBOL /koh´bol/ [COmmon Business-Oriented Language] n.
(Synonymous with evil.) A weak, verbose, and flabby language
used by card wollopers to do boring mindless things on dinosaur
mainframes. Hackers believe that all COBOL programmers are
suits or code grinders, and no self-respecting hacker will ever admit
to having learned the language. Its very name is seldom uttered
without expressions of disgust or horror. See also fear and loathing
and software rot.
lots of MIPS but no I/O adj. Used to describe a person who is
technically brilliant but can’t seem to communicate with human
beings effectively. Technically it describes a machine that has lots
of processing power but is bottlenecked on input-output (in 1991,
the IBM Rios, a.k.a. RS/6000, is a notorious recent example).
(sorry Bary ;-) — ed)
eighty-column mind [IBM] n. The sort said to be possessed by
persons for whom the transition from punched card to tape was
traumatic. It is said that these people will be buried ‘face down, 9-
edge first’ (the 9-edge being the bottom of the card). The following
is inscribed on IBM’s 1402 and 1622 card readers:

He died at the console
Of hunger and thirst.
Next day he was buried,
Face down, 9-edge first. ✒

MUUG Lines 3 April 1994

PRESIDENT’S CORNER

CORPORATE SPONSORS

 A Glimpse of the Future

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

ONLINE
B U S I N E S S S Y S T E M S

TM

Great-West Life Assurance
Company

formed within the Personal Systems (PS) division of IBM,
called the Power Personal Systems, or PP Systems. This new
division will specialize in products for the PC marketplace,
especially the notebook style of computers. In fact the PP
Systems will be uninary based, rather than binary, for further
weight savings.

Another direction that many of you will have heard of is
the WorkplaceOS coming out as a micro-kernel based
operating system to run on the PowerPC systems. This OS
will likely have several personalities available to run on the
the kernel, such as OS/2, or AIX. My sources indicate that
there will be other specialty OS’s, based on the WorkplaceOS.
One such OS will be WorkshopOS for routers, with many
toolkits built in.

A Terabyte of Storage?
On the high end of our product line are the 9076-SP1 systems,
where SP stands for Scalable POWERparallel. These are
parallel systems that consist of up to 64 RS/6000s today.
Cornell University has one that they intend to upgrade to 512
processors. The direction I have heard of is to continue up to
1024 processors. Each of these processors has local disk as
they are running in parallel. In fact they could easily have 1GB
of disk each. So for all 1024 of the processors they would have
1KGB of disk. Very secure!

Well that’s all the inside info I have to pass on for now.
I’d just ask you to remember that this edition of the newsletter
coincides with a very special time of year, and you can’t
always believe what you read! ✒

This month I have the rare treat of being able to provide some
insight into the future of IBM products. I have just recently
been informed of many new directions that IBM is taking.
Most of these products are of great interest to the UNIX
community, so I thought I’d take the opportunity to describe
some of the wonderful things coming in the near future.

That Wascaly WABI
There has been huge interest in the coming availability of
WABI (Windows Application Binary Interface) for all those
MS Windows fans. This addresses the requirements of one of
the larger desktop user “communities” out there. However
there are a number of smaller “communities” that have not yet
been addressed. One that IBM recognizes is long overdue for
recognition is the large application base of CP/M. So I am
happy to announce the direction of providing CUE (CP/M
User Environment). This will give all of the people that are
still big CP/M users a chance to move to the latest technology.

My 409?
Another development direction that everyone is talking about
is the PowerPC. IBM’s Bruce Danforth just presented on this
at our last meeting. One direction he mentioned was of the
PowerPC getting into process control environments. The
PowerPC chips to be used for process control are going to
have a different numbering scheme than the current 601, 603,
604, 620, ... chips. I have inside info that the numbering will
be “4xx”, and that one of the specific chips will be marketed
with the slogan “She’s so fine, my 409.”

On the same topic of PowerPC, there will be a new group

By Bary Finch

MUUG Lines 4 April 1994

only those inside your encapsulation barrier (your members,
friends, and [for ‘protected’ things] your subclasses) should have
access.
Question 23: What are some advantages/disadvantages of using friends?
The advantage of using friends is generally syntactic. i.e.: both a
member fn and a friend are equally privileged (100% vested), but a
friend function can be called like f(obj) , where a member is called
like obj.f() . When it’s not for syntactic reasons (which is not a
‘bad’ reason — making an abstraction’s syntax more readable
lowers maintenance costs!), friends are used when two or more
classes are designed to be more tightly coupled than you want for
‘joe public’ (ex: you want to allow class ‘ListIter ’ to have more
privilege with class ‘List ’ than you want to give to ‘main() ’).

Friends have three disadvantages. The first disadvantage is
that they add to the global namespace. In contrast, the namespace
of member functions is buried within the class, reducing the chance
for namespace collisions for functions.

The second disadvantage is that they aren’t inherited. That is,
the ‘friendship privilege’ isn’t inherited. This is actually an
advantage when it comes to encapsulation. Ex: I may declare you
as my friend, but that doesn’t mean I trust your kids.

The third disadvantage is that they don’t bind dynamically.
i.e.: they don’t respond to polymorphism. There are no virtual
friends; if you need one, have a friend call a hidden (usually
‘protected:’) virtual member fn. Friends that take a ptr/ref to a class
can also take a ptr/ref to a publically derived class object, so they
act as if they are inherited, but the friendship rights are not inherited
(the friend of a base has no special access to a class derived from
that base).
Question 24: What does it mean that ‘friendship is neither
inherited nor transitive’?
This is speaking of the access privileges granted when a class
declares a friend.
The access privilege of friendship is not inherited:

• I may trust you, but I don’t necessarily trust your kids.
• My friends aren’t necessarily friends of my kids.
• Class ‘Base ’ declares f() to be a friend, but f() has no

special access rights with class ‘Derived ’.
The access privilege of friendship is not transitive:

• I may trust you, and you may trust Sam, but that doesn’t
necessarily mean that I trust Sam.

• A friend of a friend is not necessarily a friend.
Question 25: When would I use a member function as opposed
to a friend function?
Use a member when you can, and a friend when you have to. Like
in real life, my family members have certain privileges that my
friends do not have (ex: my family members inherit from me, but
my friends do not, etc). To grant privileged access to a function,
you need either a friend or a member; there is no additional loss of
encapsulation one way or the other. Sometimes friends are
syntactically better (ex: in class ‘X’, friend fns allow the ‘X’ param
to be second, while members require it to be first). Another good
use of friend functions are the binary infix arithmetic operators. Ex:
‘aComplex + aComplex ’ probably should be defined as a friend
rather than a member, since you want to allow ‘aFloat + aComplex ’
as well (members don’t allow promotion of the left hand arg, since
that would change the class of the object that is the recipient of the
member function invocation). ✒

PROGRAMMING

C++ Q&A
By Marshall P. Cline

This month’s column will look at friends and friend functions, but
first we will wrap up operator overloading.
Question 20: Can I create a ‘** ’ operator for ‘to-the-power-of’
operations?
No. The names of, precedence of, associativity of, and arity of
operators is fixed by the language. There is no ‘** ’ operator in
C++, so you cannot create one for a class type.

If you doubt the wisdom of this approach, consider the
following code: x = y ** z ; Looks like your power operator?
Nope. z may be a ptr, so this is actually: x = y * (*z) ; Lexical
analysis groups characters into tokens at the lowest level of the
compiler’s operations, so adding new operators would present an
implementation nightmare (not to mention the increased mainte-
nance cost to read the code!).

Besides, operator overloading is just syntactic sugar for
function calls. It does not add fundamental power to the language
(although this particular syntactic sugar can be very sweet, it is not
fundamentally necessary). I suggest you overload ‘pow(base,
exponent) ’, for which a double precision version is provided by the
ANSI-C <math.h> library.

By the way: operator^ looks like a good candidate for to-the-
power-of, but it has neither the proper precedence nor associativity.

 SECTION 6: Friends
Question 21: What is a ‘friend’?
Friends can be either functions or other classes. The class grants
friends access privileges. Normally a developer has political and
technical control over both the class, its members, and its friends
(that way you avoid political problems when you want to update a
portion, since you don’t have to get permission from the present
owner of the other piece(s)).
Question 22: Do ‘friends’ violate encapsulation?
Friends can be looked at three ways: (1) they are not class members
and they therefore violate encapsulation of the class members by
their mere existence, (2) a class’ friends are absorbed into that
class’ encapsulation barrier, and (3) any time anyone wants to do
anything tricky they textedit the header file and add a new friend so
they can get right in there and fiddle ‘dem bits.

No one argues that (3) is a Good Thing, and for good reasons.
The arguments for (1) always boil down to the rather arbitrary and
somewhat naive view that a class’ member functions ‘should’ be
the only functions inside a class’ encapsulation barrier. I have not
seen this view bear fruit by enhancing software quality. On the
other hand, I have seen (2) bear fruit by lowering the overall
coupling in a software system. Reason: friends can be used as
‘liaisons’ to provide safe, screened access for the whole world,
perhaps in a way that the class syntactically or semantically isn’t
able to do for itself.
Conclusion: friend functions are merely a syntactic variant of a
class’ public access functions. When used in this manner, they
don’t violate encapsulation any more than a member function
violates encapsulation. Thus a class’ friends and members are the
encapsulation barrier, as defined by the class itself.

I’ve actually seen the ‘friends always violate encapsulation’
view destroy encapsulation: programmers who have been taught
that friends are inherently evil want to avoid them, but they have
another class or fn that needs access to some internal detail in the
class, so they provide a member fn which exposes the class’ internal
details to the PUBLIC! Private decisions should stay private, and

MUUG Lines 5 April 1994

FEEDBACK

A Concise Guide to UNIX Books
Compiled by: Samuel Ko (kko@sfu.ca, sko@wimsey.bc.ca)

Submitted by Andrew Trauzzi

This month’s column looks at some general intermediate/
advanced UNIX books.

Unix for the Impatient Authors
Paul Abrahams and Bruce Larson

1992 ISBN: 0-201-55703-7
• Highly Recommended. A comprehensive and in-depth

reference to Unix. “ a handbook you can use both as a
manual to learn UNIX and as a ready reference for fast
answers to specific UNIX questions.”

Unix Power Tools
Jerry Peek, Tim O’Reilly and Mike Loukides

1993 ISBN: 0-553-35402-7
• Highly Recommended. Simply great!!! “ [It] contains

literally thousands of tips, scripts, and techniques that make
using UNIX easier, more effective, and even more fun.”
With a CD-ROM disk containing PD programs and shell
scripts. The shell scripts can also be obtained by anon-ftp
from ftp.uu.net (as /published/oreilly/power_tools/
unix/upt.mar93.tar.Z).

Unix System V Release 4: The Complete Reference
Stephen Coffin

1990 ISBN: 0-07-881653-X
• Another good book on Unix fundamentals and related

subjects.
Unix Desktop Guide to Tools

Pete Holsberg
1992 ISBN: 0-672-30202-0

• A comprehensive guide to numerous Unix utilities.
Modern Unix

Alan Southerton
1992 ISBN: 0-471-54916-9

• Covering selected topics like shells, X Window, networking.
Unix in a Nutshell

Daniel Gilly and O’Reilly staff
1992 (for System V and Solaris 2) ISBN: 1-56592-001-5

• Highly recommended. An excellent desktop reference to
almost all Unix commands. “ a complete reference contain-
ing all commands and options, plus generous descriptions
and examples that put the commands in context.” Also, an
edition for 4.3. BSD (ISBN: 0-937175-20-X).

SSC reference cards
SSC staff

1984-93 ISBN: 0-916151-**-*
• These are some good, inexpensive reference/tutorial cards

on Unix commands, Bourne shell, Korn shell, emacs, vi, C,
C++, etc. e.g. the new “Unix System Command Summary
for SVR4.2/Solaris 2.1” (ISBN: 0-916151-61-1). Contact
Belinda Frazier <bel@ssc.com> or <sales@ssc.com> for
more info.

The Design of the Unix Operating System
Maurice Bach

1986 ISBN: 0-13-201799-7
• An excellent reference on the internals of System V This

book and the next one are indeed highly technical. And if
you just want a short case study on Unix, consult a good
operating systems text like Modern Operating Systems by
A. Tanenbaum or Operating System Concepts by A.
Silberschatz, J. Peterson and P. Galvin.
The Design and Implementation of the 4.3 BSD Unix

Operating System
S. Leffler, M. McKusick, M. Karels and J. Quarterman

1990 ISBN: 0-201-06196-1
• An authoritative description of the design of BSD Unix ... “

It covers the internal structure of the 4.3BSD system and
the concepts, data structures, and algorithms used in
implementing the system facilities.”

Next month, we will look at some UNIX books on shells and
shell programming (including the Korn shell), and several
books on UNIX editors including vi and emacs. ✒

ADVERTISEMENT — by Roland Schneider

Announcing Cork Board™, the most efficient method of inter-office communication to come along in thirty years.
Are you tired of the constant hassle of obscure commands, unreliable operation and user dis-interest in your office
bulletin board system? Looking for a better way for people at the office to communicate? Well, look no further!
Cork Board™ features proven technology coupled with the most intuitive, easy to use user interface ever devised.
Just look at these features:

• Easy one-hand, thumb-operated user interface!
• No typing skills necessary — uses evolutionary OCR technology with near 100% accuracy.
• “At a glance”® message reading is simple, effective, and leaves hands free to hold coffee and a muffin.
• Automatic layering of new messages over old ones.
• Low maintenance: requires only bi-yearly transfer of old messages to the circular file.
• Reliable: message database cannot be affected by power spikes.

For more information on this and other fine organic office products, call Tree Bark Technologies at 1-800-555-CORK.
Your boss will love you for it!

MUUG Lines 6 April 1994

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

Question 1: Why do I get [some strange error message]
when I “rsh host command” ?
(We’re talking about the remote shell program “rsh ” or
sometimes “remsh ” or “ remote ”; on some machines, there is
a restricted shell called “rsh ”, which is a different thing.)

If your remote account uses the C shell, the remote host
will fire up a C shell to execute ‘command’ for you, and that
shell will read your remote .cshrc file. Perhaps your
.cshrc contains a “stty ”, “ biff ” or some other command
that isn’t appropriate for a non-interactive shell. The
unexpected output or error message from these commands
can screw up your rsh in odd ways.
Here’s an example. Suppose you have

stty erase ^H biff y
in your .cshrc file. You’ll get some odd messages like this.
% rsh some-machine date stty: : Can’t assign
requested address Where are you? Tue Oct 1
09:24:45 EST 1991
You might also get similar errors when running certain “at ”
or “cron ” jobs that also read your .cshrc file.

Fortunately, the fix is simple. There are, quite
possibly, a whole bunch of operations in your “.cshrc ”
(e.g., “set history=N ”) that are simply not worth doing
except in interactive shells. What you do is surround them in
your “.cshrc ” with:

if ($?prompt) then operations.... endif
and, since in a non-interactive shell “prompt ” won’t be set,
the operations in question will only be done in interactive
shells.

You may also wish to move some commands to your
.login file; if those commands only need to be done when a
login session starts up (checking for new mail, unread news
and so on) it’s better to have them in the .login file.
Question 2: How do I {set an environment variable,
change directory} inside a program or shell script and
have that change affect my current shell?
In general, you can’t, at least not without making special
arrangements. When a child process is created, it inherits a
copy of its parent’s variables (and current directory). The
child can change these values all it wants but the changes
won’t affect the parent shell, since the child is changing a
copy of the original data.

Some special arrangements are possible. Your child
process could write out the changed variables, if the parent
was prepared to read the output and interpret it as commands
to set its own variables.

Also, shells can arrange to run other shell scripts in
the context of the current shell, rather than in a child process,
so that changes will affect the original shell.
 For instance, if you have a C shell script named
“myscript ”:
cd /very/long/path setenv PATH /something:/something-else
or the equivalent Bourne or Korn shell script

cd /very/long/path PATH=/something:/something-else
export PATH
and try to run “myscript ” from your shell, your shell will
fork and run the shell script in a subprocess. The subprocess
is also running the shell; when it sees the “cd ” command it
changes its current directory, and when it sees the “setenv ”
command it changes its environment, but neither has any
effect on the current directory of the shell at which you’re
typing (your login shell, let’s say).

In order to get your login shell to execute the script
(without forking) you have to use the “. ” command (for the
Bourne or Korn shells) or the “source ” command (for the C
shell). i.e. you type

. myscript
to the Bourne or Korn shells, or

source myscript
 to the C shell.

If all you are trying to do is change directory or set an
environment variable, it will probably be simpler to use a C
shell alias or Bourne/Korn shell function. See the “how do I
get the current directory into my prompt” in the Feb. issue of
MUUGLines.
A much more detailed answer prepared by <Thomas.
Michanek@lin.infolog.se> (Thomas Michanek) can be
found at ftp.wg.omron.co.jp in /pub/unix-faq/docs/
script-vs-env .
Question 3: How do I redirect stdout and stderr sepa-
rately in csh?
In csh, you can redirect stdout with “>”, or stdout and stderr
together with “>&” but there is no direct way to redirect
stderr only. The best you can do is

(command >stdout_file) >&stderr_file
which runs “command” in a subshell; stdout is redirected
inside the subshell to stdout_file , and both stdout and
stderr from the subshell are redirected to stderr_file , but
by this point stdout has already been redirected so only stderr
actually winds up in stderr_file .

If what you want is to avoid redirecting stdout at all,
let sh do it for you.

sh -c 'command 2>stderr_file'
Question 3: How do I ring the terminal bell during a shell
script?
The answer depends on your Unix version (or rather on the
kind of “echo ” program that is available on your machine).
A BSD-like “echo ” uses the “-n ” option for suppressing the
final newline and does not understand the octal \nnn
notation. Thus the command is

echo -n '^G'
where ̂G means a _literal_ BEL-character (you can produce
this in emacs using “Ctrl-Q Ctrl-G ” and in vi using “Ctrl-
V Ctrl-G ”).

A SysV-like “echo ” understands the \nnn notation
and uses \c to suppress the final newline, so the answer is:
echo '\007\c' ✒

MUUG Lines 7 April 1994

HANDS-ON

GNU Review
By Peter Graham

Greetings. The deadline for submitting this article is March 19th.
Can anyone guess what the date is now when I am writing it? I
knew you could. :-)

I thought that this month I would start talking about some of
the Gnu tools designed to aid in software development. Most people
use make and SCCS (the Source Code Control System) to manage
their software projects under Unix. As with other Unix programs,
there are enhanced gnu products. For make, its ‘make’ (funny how
they keep the same names...) while RCS is Gnu’s replacement for
SCCS. Gnu also offers another product called CVS (a front end to
RCS). Conveniently enough, there are three products and three
months left in the year, so I’ll talk about RCS this month, Gnu
make next month, and then close out the year by talking about CVS.

RCS — the Revision Control System
Why RCS isn’t called SCCS or GCCS I don’t know. Its likely
historical but since RCS isn’t a strict superset of SCCS, its probably
just as well.

So what is revision control? If you consider the process of
software development (or development of any frequently modified,
multi-file project) you will realize that it is a process of continual
refinement. Even once a program is written, it goes through a life
cycle of improvements, bug fixes, and extensions. Furthermore, a
program may spawn multiple programs that are based on it. It is
helpful if the “versions” of the software that result at each stage of
the development process can be maintained rather than being
overwritten with each software change. This permits back out to
previous versions when mistakes are made, allows different
versions (perhaps with different performance characteristics) of a
program, and supports the concurrent development of multiple
program releases. RCS helps you automate this process in a storage
efficient way. It also helps in coordinating the work of multiple
programmers working on a single project by ensuring that program-
mers don’t make conflicting updates to the code. Finally, RCS also
allows versions to be merged. This is useful when code develop-
ment has proceeded independently on different versions of a
program resulting in versions (say for two different machine
architectures) with different capabilities. By merging the code, the
addition of new features from other code versions can be simplified.

All the versions of a given file/system are maintained in a tree
structure which reflects their relationships. Programmers may check
code in and out of the tree for modification. RCS users are asked to
document their changes at check in time. This documentation is
associated with each version and can be extracted automatically to
produce a change history for the code.

RCS requirements
RCS maintains versions of software using “deltas”. That is, it does
not store each version in its entirety. Instead, to save disk space, it
stores the differences between a version and the version which
precedes it. In order to manage these deltas, RCS uses the Unix
‘diff ’ program extensively and the diff on your machine must have
certain capabilities. Quoting from the installation document...
 “RCS requires a diff that supports the -n option. Get GNU diff
(version 1.15 or later) if your diff lacks -n . RCS works best with a
diff that supports -a and -L , and a diff3 that supports -E and -m.
GNU diff supports these options.”

If you want to use RCS, make sure you get Gnu diff. Things
will work a lot smoother.

RCS installation
RCS is not a standard Gnu install (no ‘./configure ’ step) but
installation is still simple. Since there is no ‘configure ’ to run, you
have to customize the Makefile yourself manually. This is accom-
plished by editing the Makefile and commenting out incorrect lines
and uncommenting correct ones. A section of the README file in
the ‘src ’ directory called “Makefile notes” is provided to assist
with this process. Installation then requires you to run a ‘make
conf.h ’ and if this is successful, a ‘make all ’ followed by a ‘make
install’. The edits were pretty simple for my machine (I think I just
had to change one incorrect pathname prefix). The ‘make conf.h ’
will take a while to run (~5 minutes) since it is doing the source
code customization normally accomplished (along with the
Makefile customization) by ‘./configure ’. The ‘make all ’ also
took about 5 minutes. Documentation is installed separately by
doing a ‘make install ’ in the ‘man’ directory.

RCS Components
RCS isn’t a single program. Instead, it is a collection of several
programs, each of which performs a different function. Here is a list
of the programs and what they do:

co • Check Out a source file. Takes a copy of the file
from an RCS archive and locks access to that file
for other programmers.

ci • Check In a source file. Places the file into an RCS
archive and releases any held locks on the file.

ident • Identify the version(s) of a source file.
merge • Incorporate the changes made between two files

into a third.
rcs • Manage rcs file attributes.
rcsdiff • Compare two rcs file versions.
rcsmerge • Merge versions rather than files.
rlog • Print log and other information about RCS files.

RCS Usage
RCS stores archived versions in a directory called RCS. So start by
making an RCS directory. Then check in (‘ci ’) all of your source
files. They will disappear as you check them in and be stored for
you under the RCS directory. When you wish to update a file just
check it out (‘co ’). Basic usage is as easy as that. Due to space
limitations, we’ll have to leave it at that. See the man pages or
‘ rcs.ps ’ (contained in the distribution) for more information.

RCS vs SCCS
Why use RCS instead of SCCS which you probably already have?
There are several reasons. First, RCS has a simpler and more
intuitive user interface. It also offers enhanced capabilities
including improved version identification and more flexible version
selection rules (see the documentation). It is also more efficient in
both space and time. It is faster than SCCS for most functions and
has an improved delta scheme which decreases space utilization for
the storage of versions. If this hasn’t convinced you, find an active
user and ask them. RCS users are avid supporters of the software.

☛

MUUG Lines 8 April 1994

RCS Summary
Name............................... RCS (Revision Control System).
Description Tool to help manage versions and

releases of software.
Archive Loc’nprep.ai.mit.edu: /pub/gnu/rcs-

5.6.0.1.tar.gz
Archive size 250585 bytes.
Approx Space to Install .. 2MB.
Time to Install (Sparc-1) 11 minutes.
Pros • Free, small, and easy to install.

• Understandable online man pages AND
excellent offline paper describing the
system as a whole.

• Superset of SCCS in function and
performance.

Cons • Damn few I could think of, although it’s
obviously not as glitzy as some of the
graphically based development systems
which offer similar capabilities. (Mind
you RCS doesn’t cost $2K per seat
either.)

Catch you all later. Maybe our baby sitters will be back from the
sunny climes of Arizona and we’ll be able to make it to the next
meeting. If so, we’ll see you there. Requests to <pgraham@
cs.umanitoba.ca >. ✒

way around the world (using the “finger” command, of
course).

 10:19 Feel sleepy, should not have stayed late playing tetris
last night.

 10:31 Momentary panic attack!!!!!!!!!!!!
 10:43 Edit .plan file.
 10:45 Write a shell program to edit .plan more easily
 10:59 Drop in at advisor’s office and borrow something you

don’t need & and kinda make him aware you are
working hard on your project.

 11:05 Perverted daydreams.
 11:11 Read electronic news.
 11:15 Mid-morning yawn time.
 11:34 Start typing junk at a very high key-in rate to pretend

you are working hard as your advisor passes by from
outside.

 11:35 Press the BackSpace key for one and a half minutes until
all the garbage you typed in is erased.

 11:37 Realize that you can type more than 256 characters per
half minute.

 11:41 Flirt with the new girl in the department.
 11:45 Print out some slides for afternoon’s draft + presentation.
 11:47 Print them again, you forgot to change the date from last

presentation.
 11:49 Print another copy in case this one gets lost.
 11:51 Completely forget about sueing the coffee-machine

company.
 12:15 Hunger pangs.
 12:20 BigMac/Fries time. Drink a not-so-cold generic can of

cola from your desk. Ch-Ching, you just saved 35 cents
by buying bulk cola.

 1:00 Group Meeting with advisor.
 1:14 Sudden awareness of one’s shallowness.
 1:20 Resentment towards foriegn officemate for sucking up

to your advisor.
 1:30 Get reminded by your advisor that you need to do some ☛

Anonymous
 6:30am Wakeup and lie awake in Bed.
 6:31 Realize you spent $18 on last night’s dinner, means

no eating out for the next 6 weeks .
 6:32 Hit snooze button. Go back to sleep.
 7:00 Wake up suddenly with heart in mouth when you realize

you didn’t hit the snooze button—you turned it off.
 7:01 Fall asleep again.
 7:44 Wake up with heart in mouth again.
 7:45 Ready to go to school, will shave tommorrow, will eat

early brunch at (Denny’s/Penny’s/Lenny’s/Dinko’s
whatever cafeteria).

 8:03 Arrive at school. Realize your foreign officemate arrived
earlier today. Must have got more work done.

 8:04 Pass by Advisor’s office, chat with Secretary to find out
if he is coming in today. He is, darn. Need to start work
on the draft due this afternoon.

 8:15 Read electronic mail.
 8:20 Delete mail from students taking 74.206 regarding

questions about the class.
 8:30 Hate your TA job.
 8:55 Depression: too much work to do today.
 9:00 For jumpstart: go to Pepsi machine.
 9:05 Kick Pepsi machine; promise yourself to call up the

company and ask for your money back.
 9:06 Wonder why they would beleive you.
 9:33 Start printing out loads of stuff that may be vaguely

related to your work.
 9:41 Early morning stupefaction.
 9:42 Mutter racist comments to yourself about your

officemate.
 9:43 Curse your officemate in a low tone he would not

comprehend.
 9:44 Feel good about him not grasping English well.
 9:58 Finger everyone in the department and most people half

This Month’s Speaker
This month, Marlon Miller of Xerox Canada Ltd. will be presen-
ting document management and workflow in a client server
environment.
Why Would Xerox (“the document company”) be speaking to MUUG?

Xerox undertook the first Object Oriented database research
in the 1960’s and created the first OO Language — Smalltalk, co-
developed ethernet, founded the Palo Alto Research Center
(PARC), created the first PC (the Alto) before IBM or Apple,
created the first WYSIWYG interface (which was the impetus
behid MS Windows, System 7, and OpenLook), the laser printer,
the optical mouse, the first LAN, etc...

Marlon Miller is Marketing Manager of Document Manage-
ment Solutions for Xerox Canada. Marlon has been involved with
electronic publishing and document management for the last 15
years. Most recently at Xerox, he has focused on integrated
document management solution sales combining document
library services, workflow and full text retrieval. Additionally, he
has significant experience with electronic document composition,
SGML and high-speed demand publishing.

He was involved with implementing the ATOS system for
the Air Force, the original system which helped spawn the CALS
initiative and SGML publishing. He is an executive member of
the Canadian SGML Users’ Group and is based out of Toronto.
Marlon has an undergraduate degree from Carnegie-Mellon
University with additional coursework completed at UCLA.

A Day in the Life of a Grad Student

MUUG Lines 9 April 1994

more work for your literature survey.
 1:51 Advisor hands you the reddened copy of your draft for

corrections.
 1:51:02 The 49 second urge to murder advisor begins!!
 1:51:52 Realize that he controls your assistantship/grade/

graduation possiblity/graduation date/all job opportuni-
ties/and the rest of your life.

 1:52:53 Thank him.
 1:52:54 Thank yourself for not saying something stupid to your

advisor.
 1:53:00 Splitting headache #1.
 1:59 Check electronic mail, don’t reply though, you are too

busy to do that.
 2:06 More generic cola.
 2:17 Oh No, it is my turn to cook tonite :-(
 2:30 Sit through the class you were told to sit through.
 2:39 Look outside the window make unrealistic plans to quit

this degree program and take up a job.
 2:42 Wonder why blonde girls are so pretty.
 2:48 More perverted day-dreams.
 2:51 Close the office door and open a few .gif files.
 3:04 Sharpen pencil.
 3:06 Worry about never graduating.
 3:08 Time to write a letter—NOT! No time for that.
 3:10 Rearrange desk.
 3:30 Call up bank; see if you have any money.
 3:40 Fear of losing aid next Fall.
 3:41 Read latex manuals to figure out how to put &$%&% in

%$^% format.
 3:43 Watch the clock.
 4:50 Make plans to do a all-nighter tonite.
 4:55 Vow to watch only 2 TV programs.
 4:58 Notice Advisor leave.
 4:58:01 Sudden sense of freedom.
 4:58:03 Go home for quick, short dinner break.
 9:00pm Come into the office.
 9:01pm The hard working grad student you are, you have to

come to the office late at night to “get the work done.”

 9:03 Check electronic mail.
 9:10 Decide it would be a good time to attack those ftp sites

since network wont be loaded.
 9:40 Run into “since network wont be loaded” traffic and get

the pictures into your machine.
 9:45 Compress all unwanted research/class directories to

make space.
 9:59 Back up all your pictures.
 10:11 Admire pictures.
 10:45 Begin work; Realize you need references.
 10:46 Realize its too late today to go to the library.
 10:47 Sudden feeling of having wasted the day.
 10:48 Sudden feeling of possibly having to waste the night.
 10:49 Decide to turn in early and come back very early

tommorrow morning.
 10:50 Decide to play a Tetris on the system to put yourself in a

good mood.
 11:15 Play game after game after game to improve your score

and get on the scoreboard.
 11:45 Realize that your officemate is still at number 6, two

notches above you on the scoreboard.
 12:20 Play until you beat your officemate into the 7th place.

A sense of achievment!! Yes, today was not wasted!!
 12:47 Return home to find your roommate watching David

Letterman reruns on NBC. Tell him about the “hard
working grad student day you had.”

 1:00 Discuss philosophy with roommate.
 1:09 Think about becoming a philosopher and dining with 4

others. (The Dining Philosophers problem, hee hee :-)
(Comp Sci joke.)

 1:15 Argue with him about politics, why people prefer
Japanese cars and whether it is better to set the heat to
“hot” or “cold” to defrost the windshields faster.

 1:49 Realize neither of you have bought milk today. Get
reminded of the “too much milk problem.”

 2:04 Forget about getting up early. Turn the phone ringer off
and go to sleep.

(repeat) ✒

ACCENTServer™ is a monthly publication of National Information
Systems, Inc., (NIS) containing interesting news and views, and
some hearsay from around the globe.

Free Subscriptions:
info@nis.com

Article/News Submissions:
accentserver@nis.com

YOU CAN BEAT CARPAL TUNNEL SYNDROME

One of the most talked about disorders affecting millions of
computing professionals, Carpal Tunnel Syndrome, can be
prevented by following these simple steps:

1. Keep your wrists and elbows flat, not angled, at the
keyboard.

2. Take a short break from typing every 15 minutes.
3. Exercise your hands by rotating the wrists, stretching the

fingers apart, and bending the hands slowly back and forth.
4. Type gently.
5. Sit at a 90-degree angle to your work — you shouldn’t have

to stretch or lean over to reach the keyboard.

SEQUOIA INTERNATIONAL ANNOUNCES MOTIF 1.2.3
FOR LINUX, BSDI, ETC.

Sequoia International, Inc. recently announced the availability of
OSF/Motif 1.2.3 for these environments: Coherent 4.2, Linux 0.99,
BSDI 1.0, FreeBSD 1.0.2, and NetBSD 0.9. OSF/MOTIF is one of
the most widely accepted graphical user interfaces for the X
Window System.

Packages contain the complete runtime and development
environment for Motif 1.2.3, which includes the following:

• The Motif Window Manager (mwm)
• Shared Library (libXm) [Linux Only]
• Static Libraries (libXm, libMrm and libUil)
• Header and Include Files
• Complete On-line Manual Pages
• Source code to OSF/Motif demo programs
• Complete OSF/Motif Users Guide

For order information as well as technical details on the above
products, contact:
Sequoia International, Inc. E-Mail: info@seq.com
600 W. Hillsboro Blvd, Suite 300 Phone: (305) 480-6118
Deerfield Beach, FL 33441 Fax: (305) 480-6198

Accent Server News

MUUG Lines 10 April 1994

MEETINGS

Agenda
for

Tuesday, April 12, 1994, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

SIG Sideline
By Brad West, SIG Coordinator

1. President’s Welcome 7:30

3. Business Meeting 7:35
a) Old Business
b) New Business

5. Presented Topic 7:45
This month, Marlon Miller of Xerox Canada Ltd.
will be presenting document management and
workflow in a client server environment.

See the writeup on page 8 for more info.

4. Coffee Break and Informal Discussion 9:00

Note: Please try to arrive at the meeting between 7:15 and
7:30, to avoid disrupting the meeting in progress.
below for details).

Once again we had a strong turnout at our last SIG (Special Interest
Group) meeting on Tuesday, the 15th. The meeting started out with
a round table discussion. The topics discussed ranged from video
adapter card problems in Linux to writing and modifying printcap
files. Of course the discussions turned to what’s new in Linux. The
official release of Linux has finally reached 1.0. The release will
now take two base paths, 1.01 path will be the hacker paradise
version, and 1.1 path will be the stable release platform. As the
hacker’s version becomes stable, the release will be incorporated in
the stable version. One of the next big projects being worked on in
Linux is the network code.

The presentation for the evening was sendmail given by Gilles
Detillieux. Gilles gave a great overview presentation of the
workings of sendmail. Some of sendmail special features presented
were: point to point, delivery and forget, aliasing and forwarding,
mailing list, and error notification. Topics covered were: installa-
tion, sendmail components, to MX or not to MX, and the approach
to sendmail setup. The pros of sendmail presented are: it is a public
domain program with the source code available, it is relatively bug
free, and is configurable and flexible. The cons are: its step learning
curve, tricky rules and, that fact that it is an old program.

No specific presentation is scheduled for the next meeting to
date, in the event that a speaker is not found, we will continue with
the round table format. If anyone is interested in being a guest
speaker at a SIG meeting, or you have a specific topic of interest,
let me know. I can be reached by email <bwest@muug.mb.ca >, or
my work phone is 983-0336. The next meeting is scheduled for
Tuesday, April 19, at 7:30 PM. This meeting will again be held at
ISM, 400 Ellice Avenue, behind Portage Place. Our host is
Wolfgang von Thuelen. He will be waiting in the lobby as of 7:15
PM to let everyone in. Hope to see you at the April meeting.

Internet Corner
Compiled By Andrew Trauzzi

Question: How do I send mail to other networks?
Mail to the Internet is addressed in the form <user@domain >.
(Without the ‘< >’). Remember that a domain name can have
several components and the name of each host is a node on the
domain tree. So, an example of an Internet mail address is
<atrauzzi@mona.muug.mb.ca >.

There are several networks accessible via e-mail from the
Internet, but many of these networks do not use the same addressing
conventions the Internet does. Often you must route mail to these
networks through specific gateways as well, thus further complicat-
ing the address.

Here are a few conventions you can use for sending mail from
the Internet to three networks with which Internet users often
correspond.

Internet user to BITNET user:
user%site.BITNET@BITNET-GATEWAY
e.g. gsmith%emoryu1.BITNET@cunyvm.cuny.edu
Internet user to UUCP user:
user%host.UUCP@uunet.uu.net
user%domain@uunet.uu.net
Internet user to SprintMail user:
/G=Mary/S=Anderson/O=co.abc/ADMD=SprintMail/C=US/
@SPRINT.COM (case is significant)
Internet user to CompuServe user:
Replace the comma in the CompuServe userid with a period,
and add the compuserve.com domain name.
CompuServe user to Internet user:
>Internet:user@host
Insert >internet: before an Internet address.

Internet user to MCIMail user:
accountname@mcimail.com
mci_id@mcimail.com
full_user_name@mcimail.com. ✒

Meeting:
Next month’s meeting is scheduled for Tuesday, May
10, at 7:30 PM. Meeting location will be the St-Boniface
Research Centre, as usual. The March meeting topic is
security. Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you’d like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<rsch@muug.mb.ca >.

Newsletter:
If you are interested in a particular topic, let me know.
I’m sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones —
half a page to one page (400 to 1000 words) would be
fine.
Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again – please
submit your questions to the old guy via e-mail to
<m-ex@muug.mb.ca >. He may be old, but he’s not ready
for retirement yet!

Coming Up

☛

