
MUUG Lines 1 December 1993

Volume 6, Number 2

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Manitoba UNIX User Group

Meeting Location:
Our next meeting is scheduled for Tuesday, Decem-
ber 14, at 7:30 PM. The Annual MUUG Wine and
Cheese Party will be held in the atrium of the St-
Boniface Hospital Research Centre, just south of the
hospital itself, at 351 Taché. You don’t have to sign
in at the security desk – just say you’re attending the
meeting of the Manitoba UNIX User Group. The
atrium is on the main floor, and is easily seen from
the entrance.

Meeting Agenda: Annual MUUG Open House!

Newsletter Editor’s Ramblings2
President’s Corner3
C++ Q & A ...4
GNU Column ...5
New “Politically Correct” UNIX7
SIG Sideline ..8
Dec 14th Meeting Agenda8

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX User Group

December 1993 $2.50

Compiled by Ted Timar
(Submitted by Andrew Trauzzi)

UNIX Commands Explained

holdover from the early days. Dennis Ritchie has reported:
“Sometimes we sent printer output or batch jobs to the
GCOS machine. The gcos field in the password file was a
place to stash the info. for the $IDENT card. Not elegant.”

nroff — “New ROFF”, troff— “Typesetter new ROFF”
These are descendants of “roff”, which was a re-implemen-
tation of the Multics “runoff” program (a program that
you’d use to “run off” a good copy of a document).

biff — “BIFF”
This command, which turns on asynchronous mail notifica
tion, was actually named after a dog at Berkeley. Biff was
popular among the residents of Evans Hall, and was known
for barking at the mailman, hence the name of the command.

rc (as in “.cshrc” or “/etc/rc”) — “RunCom”
“rc” derives from “runcom”, from the MIT CTSS system,
ca. 1965. “There was a facility that would execute a bunch
of commands stored in a file; it was called ‘runcom’ for
‘run commands’, and the file began to be called ‘a runcom.’
‘rc’ in Unix is a fossil from that usage.” Brian Kernighan
& Dennis Ritchie mention that “rc” is also the name of the
shell from the new Plan 9 operating system.

Perl — “Practical Extraction and Report Language”
Perl — “Pathologically Eclectic Rubbish Lister”

The Perl language is Larry Wall’s highly popular freely-
available completely portable text, process, and file
manipulation tool that bridges the gap between shell and C
programming (or between doing it on the command line
and pulling your hair out). ✒

Here is a condensed list of UNIX commands that you may
have seen (and even used), but might not know what they
stand for:
awk — “Aho Weinberger and Kernighan”

This language was named by its authors, Al Aho, Peter
Weinberger and Brian Kernighan.

grep — “Global Regular Expression Print”
grep comes from the ed command to print all lines match-
ing a certain pattern g/re/p where “re” is a “regular expression”.

fgrep — “Fixed GREP”.
fgrep searches for fixed strings only. The “f” does not
stand for “fast” - in fact, “fgrep foobar *.c” is usually
slower than “egrep foobar *.c” (Yes, this is kind of
surprising. Try it.)

egrep — “Extended GREP”
egrep uses fancier regular expressions than grep. Many
people use egrep all the time, since it has some more
sophisticated internal algorithms than grep or fgrep, and is
usually the fastest of the three programs.

cat — “CATenate”
catenate is an obscure word meaning “to connect in a
series”, which is what the “cat” command does to one or
more files. Not to be confused with C/A/T, the Computer
Aided Typesetter.

gecos — “General Electric Comprehensive Operating System”
When GE’s large systems division was sold to Honeywell,
Honeywell dropped the “E” from “GECOS”. Unix’s
password file has a “pw_gecos” field. The name is a real

MUUG Lines 2 December 1993

RAMBLINGS

President: Bary Finch (W) 934-2723
Vice-President: Ramon Ayre (W) 947-2669
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Brad West (W) 983-0336
Membership Sec.: Greg Moeller (H) 786-6132
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-6009
Publicity Director Rory McLeod 488-5168
Past President Susan Zuk (W) 631-2530
Information: Bary Finch (W) 934-2723

(FAX) 934-2620
(or) Andrew Trauzzi (W) 986-6009

(FAX) 986-5966

This newsletter is opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM
the second Tuesday of every month, except July and
August. Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

Happy Holidaze!
By Andrew Trauzzi

By the time you read this, the Christmas season should be in
full swing! I’m sure there are many of you who, like me,
wait until the 22nd or 23rd to do all of their shopping. I
personally think it’s part of the Christmas spirit, although I
don’t apply the same logic to newsletter editing. I attempt to
have a final copy a week in advance of the mailing, but so
far, it hasn’t worked out that way. Here are a few regular
columns I thought of for the newsletter — some I have
implemented, and some are planned.

C++
Many of you have been asking for more technical articles
such as X-Windows and Motif programming. Unfortunately,
no one has volunteered to write a programming column, and
I don’t have the necessary experience in X-Window pro-
gramming. Instead, I will be running a monthly column that
will review C++ and object-oriented programming. The
column’s format will be mostly “canned” questions and
answers from the various programming newsgroups. If any
of you would like to ask a specific C++ question, I would be
happy to answer it in the column. If you are unhappy with
the column’s content, please drop me a line

Beginning UNIX
I have been fielding many questions about UNIX that seem
to be rather basic (to me, at least). Because of this, and the
large number of MUUG members that are entirely new to
UNIX, I have decided to publish a beginner’s UNIX column
that will outline basic (and not-so-basic) techniques you need
in order to survive on-line. If you have any UNIX ‘tips’ that
you find useful send them to me. The column wasn’t ready
for this month, but I’ve included an article on the background
behind some strange UNIX acronyms and commands.

Internetworking
I know that the large majority of MONA members use the
Internet frequently. I also know that a large number of you
would like to know where to find scads of information and
programs. This column will hopefully outline the history,
techniques, and sites of the Internet. If any of you know of a
site with something special (like hourly satellite weather
maps), send me some mail outlining the site, what’s there,
the average transfer rate, and availability. I’m sure all the
other MONA users would appreciate the information. Look
for this column in upcoming issues. ✒

MUUG Lines 3 December 1993

PRESIDENT’S CORNER

CORPORATE SPONSORS

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

Once again the festive season is upon us. We will all
celebrate in our own fashion. I hope you will join MUUG in
celebrating Christmas with our annual Christmas Wine and
Cheese meeting on Tuesday, December 14, at 7:30 p.m. It
will be held in the Atrium of the St. Boniface Hospital
Research Center. In other words, the usual time, and just
beside the usual place.

The Wine and Cheese meeting is always a great event.
Everyone gets to relax and enjoy an evening of visiting with
other members in a nice Christmas atmosphere. It’s always a
good opportunity to find out what everyone else is up to. It’s
also a chance for MUUG to say thanks to our members for
their continued support. I’m serious about this point, but
unfortunately it sounds like that wine cooler commercial.

Live Demos!
As another feature of our Christmas meeting, we will have
demonstrations from a few different people. They will be
showing off some of the interesting technologies that they
are using and pursuing. Examples of what was at last year’s
demonstrations ranged from a live Linux demo, to a live
music demo. Copperfield’s bookstore also had a presenta-
tion of some of the many UNIX-related texts they have
available.

Many of you must work with, or have as a hobby some
interesting, and reasonably portable, technologies. If you’d

like to demonstrate any of these, we’d love to have you.
Please contact me to discuss how to enter your exhibit. You
can email me at bfinch@muug, or call me at work, 934-2723.
You don’t have to build an elaborate presentation for this
demonstration. Just setup whatever you have on a table in
the atrium, and we’ll even supply the table! Of course we’d
need to know power requirements, etc., to get things ready
ahead of time.

UnixWare?
Maybe someone will have a demo of UnixWare?? This was
presented to us at our last meeting by Owen Sagness of
Novell. I felt his presentation was one of the best we’ve had.
He covered both the high level concepts, as well as fielding
any technical questions given to him. All around, it gave us
a good introduction into what UnixWare is, and where it’s
likely to go.

We will of course be continuing with our regular
presentations again in January. Our first meeting topic will
be UNIX security. The date for this meeting will be Tues-
day, January 11, 1994. This should get us all back into
business as usual after a good Christmas break.

And finally I’d like to take this opportunity to wish
everyone all the best for the Christmas season. I hope you
all have a happy holiday, and I’m looking forward to seeing
you at the Wine and Cheese! ✒

 It’s That Time Again
By Bary Finch

The
Document
Company

Great-West Life Assurance
Company

TM

MUUG Lines 4 December 1993

PROGRAMMING

C++ Q&A
By Marshall P. Cline

But this loses encapsulation. Other techniques can be
devised which allow both multiple instances and encapsula-
tion, however these lose on other accounts (ex: typedef’ing
‘Foible’ to be ‘void*’ loses type safety, and wrapping a
‘void*’ in the Foible struct loses an extra layer of indirec-
tion). So the ‘module’ technique loses multiple instan-
tiations, but the ‘struct’ technique loses encapsulation. C++
allows you to combine the best of both worlds - you can
have what amount to structs whose data is hidden.

INLINE FUNCTION CALLS : The ‘encapsulated C’
solution above requires a function call to access even trivial
fields of the data type (if you allowed direct access to the
struct’s fields, the underlying data structure would become
virtually impossible to change since too many pieces of code
would rely on it being the ‘old’ way). Function call over-
head is small, but can add up. C++ provides a solution by
allowing function calls to be expanded ‘inline’, so you have:
the (1) safety of encapsulation, (2) convenience of multiple
instances, (3) speed of direct access. Furthermore the
parameter types of these inline functions are checked by the
compiler, an improvement over C’s #define macros.

OVERLOADING OPERATORS : For the ‘Complex
Number’ example, you want to be able to use it in an
expression ‘just as if’ it was a builtin type like int or float.
C++ allows you to overload operators, so you can tell the
compiler what it means for two complex numbers to be
added, subtracted, multiplied, etc. This gives you:
z0 = (z1 + z2) * z3 / z4; Furthermore you might want
string1+string2 to mean string concatenation, etc. One of the
goals of C++ is to make user defined types ‘look like’ builtin
types. You can even have ‘smart pointers’, which means a
pointer ‘p’ could actually be a user defined data type that
‘points’ to a disk record (for example). ‘Dereferencing’ such
a pointer (ex: i=*p;) means “seek to the location on disk
where p ‘points’ and return its value”. Also statements like
p->field=27; can store things on disk, etc. If later on you
find you can fit the entire pointed-to data structure in
memory, you just change the user-defined pseudo-pointer
type and recompile. All the code that used these ‘pseudo
pointers’ doesn’t need to be changed at all.

INHERITANCE: We still have just scratched the surface.
In fact, we haven’t even gotten to the ‘object-oriented’ part
yet! Suppose you have a Stack data type with operations
push, pop, etc. Suppose you want an Invertable Stack, which
is ‘just like’ Stack except it also has an ‘invert’ operation. In
‘C’ style, you’d have to either (1) modify the existing Stack
module (trouble if ‘Stack’ is being used by others), or (2)
copy Stack into another file and text edit that file (results in
lots of code duplication, another chance to break something
tricky in the Stack part of InvertableStack, and especially
twice as much code to maintain). C++ provides a much
cleaner solution: inheritance. You say ‘InvertableStack
inherits everything from Stack, and InvertableStack adds ☛

The widespread acceptance and use of object-oriented
methodologies has many people confused as to exactly what
‘object-oriented techniques’ are. The following monthly
column will hopefully shed some light on the subject from the
programmer’s perspective. The C++ Q & A column was
originally written by Dr. Mashall P. Cline (see bio at the end
for more info), and is reprinted with permission. — ed.
Question 1: What is C++? What is OOP?
C++ can be used simply as ‘a better C’, but that is not its real
advantage. C++ is an object-oriented programming language
(OOPL). OOPLs appear to be the current ‘top shelf’ in the
development of programming languages that can manage the
complexity of large software systems.

Some OOP hype: software engineering is ‘failing’ to
provide the current users demands for large, complex
software systems. But this ‘failure’ is actually due to SE’s
successes. In other words, structured programming was
developed to allow software engineers to design/build
HUGE software systems (that’s a success). When users saw
how successful these systems were, they said, ‘More — give
me MOOORRRREEEE’. They wanted more power, more
features, more flexibility. 100K line systems are almost
commonplace nowadays, and they still want more. Struc-
tured programming techniques, some say, begin to break
down around 100K lines (the complexity gives the design
team too many headaches, and fixing one problem breaks 5
more, etc). So pragmatics demands a better paradigm than
structured programming. Hence OO-design.
Question 2: What are some advantages of C++?
GROWTH OF C++ : C++ is by far the most popular OOPL.
Knowing C++ is good for a resume, but don’t just use it as a
better C, or you won’t be using all its power. Like any
quality tool, C++ must be used the way it was designed to be
used. The number of C++ users is doubling every 7.5 to 9
months. This exponential growth can’t continue forever(!),
but it is becoming a significant chunk of the programming
market (it’s already the dominant OOPL).

ENCAPSULATION : For those of you who aren’t on a
team constructing software mega-systems, what does C++
buy you? Here’s a trivial example. Suppose you want a
‘Foible’ data type. One style of doing this in ‘C’ is to create
a ‘Foible.h’ file that holds the ‘public interface’, then stick
all the implementation into a ‘Foible.c’ file. Encapsulation
(hiding the details) can be achieved by making all data
elements in ‘Foible.c’ be ‘static’. But that means you only
get one ‘Foible’ in the entire system, which is ok if ‘Foible’
is a Screen or perhaps a HardDisk, but is lousy if Foible is a
complex number or a line on the screen, etc. Read on to see
how it’s done in ‘C’ vs ‘C++’.

MULTIPLE INSTANCES : The ‘C’ solution to the above
‘multiple instances’ problem is to wrap all the data members
in a struct (like a Pascal ‘record’), then pass these structs
around as if they were the ‘ComplexNumber’ or whatever.

MUUG Lines 5 December 1993

PROGRAMMING
the invert operation’. Done. Stack itself remains ‘closed’
(untouched, unmodified), and InvertableStack doesn’t
duplicate the code for push/pop/etc.

POLYMORPHISM : The real power of OOP isn’t just
inheritance, but is the ability to pass an InvertableStack
around as if it actually were a Stack. This is ‘safe’ since (in
C++ at least) the is-a relation follows public inheritance (ie:
a InvertableStack is-a Stack that can also invert itself).
Polymorphism is easiest to understand from an example, so
here’s a ‘classic’: a graphical draw package might deal with
Circles, Squares, Rectangles, general Polygons, and Lines.
All of these are Shapes. Most of the draw package’s
functions need a ‘Shape’ parameter (as opposed to some
particular kind of shape like Square). Ex: if a Shape is picked
by a mouse, the Shape might get dragged across the screen
and placed into a new location. Polymorphism allows the

Dr. Marshall P. Cline is the founder and President of
Paradigm Shift, Inc., a firm that specializes in on-site
training for C++, OOD, OOA, consulting, and reusable/
extensible C++ class libraries. For more information, send
e-mail to “info@parashift.com”.

HANDS-ON

Gnu Review
By Peter Graham

In last month’s column:
> Greetings everyone! If all goes well this will be a new
regular
> column in your monthly newsletter. I am excited about
writing
> this column and hope you will look forward to reading it.
Well, so far so good. I just made it this month so its been
regular for two whole months now. :-)

Busy, Busy
Its exciting times at Pat’s and my place. We just bought a
used Sun system to use as a home machine and have been
really busy getting it setup. It’s a Sparc-1 with 17" grayscale
monitor, 12MB of memory and 430MB of disk. Its not much
compared to the hot new Sparc-10’s or even Sparc-2’s, but it
meets our immediate needs. To make things busier, I am also
trying to get a conference paper out to meet a December 1st
deadline. Despite the rush, the arrival of the machine has
given me an excellent excuse to grab and install a bunch of
Gnu software.
Also in last month’s column:
> I’ll try to start out slow with simple software that all can
make
> use of.
The best laid plans of mice and men.... Oh well!

gcc!
I had planned on reviewing a simple piece of software with
applicability to the widest possible audience (I thought of
doing “oleo” — the spreadsheet program) but the need for
systems-oriented software on my workstation and the limited
time frame dictates that I talk about something I just in-
stalled. With this in mind, I thought I would do an about-face
and get the biggest/ugliest install of all out of the way as
quickly as possible. Yes, Virginia, I’m talking about the gcc/
g++ (C and C++) compiler. One advantage of talking about
gcc now is that if you are going to install other gnu products

they will often perform better if you compile them using gcc.
Having some idea of what will happen during the gcc install
may be of benefit to those who want install it and then
compile other products with it.

Gcc is big! This is due in part to the fact that it is one of
the FSF’s “flagship” products (along with Gnu emacs) — it
is an extremely good compiler that is portable to a huge
number of machines and operating systems.

Installation Overview
Fortunately for those of you who are sysadmin neophytes,
the install is not much more difficult than the install of any
other Gnu product. There is a standard installation procedure
for almost all Gnu software that consists of three basic steps:
1) running a configure script (./configure) — this script is
pretty smart and on common machine/OS configurations
does not require any arguments. It runs for a few minutes and
figures out all kinds of things about your environment so that
it can generate a customized Makefile for the next step. 2)
run make (make) — this compiles the product using the
customized Makefile produced by configure. For some of the
larger products, gcc included, this actually involves more
than one run of make. In the case of compiling gcc, three or
four passes are required to generate a native mode compiler.
(Generating a cross-compiler is quite a bit trickier but is well
documented.) 3) run make again (make install) — this re-
invokes the make file to install the required executables,
libraries, and man pages. Gnu software is normally put in
logical places by default (e.g. /usr/local/{bin,lib,man,...}). If
you require other locations, it is easy to modify the Makefile(s)
or you can provide different values for make variables
(which control installation) on the make command line.

Due to the size of gcc, the installation is quite time
consuming so be prepared to spend some time at it. On our
Sparc-1 the total install took over 4 hours but only 5 or 10
minutes of this required user intervention. This means ☛

code to work correctly even if the compiler only knows that
the parameter is a ‘Shape’ without knowing the exact kind of
Shape it is. Furthermore suppose the ‘pick_and_drag
(Shape*) function just mentioned was compiled on Tuesday,
and on Wednesday you decide to add the Hexagon shape.
Strange as it sounds, pick_and_drag() will still work with
Hexagons, even though the Hexagon didn’t even exist when
pick_and_drag() was compiled!! (it’s not really ‘amazing’
once you understand how the C++ compiler does it — but
it’s still very convenient!) ✒

MUUG Lines 6 December 1993

HANDS-ON

4) Issue the command:
“make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"”.
This will build all three language compilers. If you want a
subset, you can specify the make argument:
“LANGUAGES="LIST"” where LIST should contain one or
more of the words ‘c’, ‘c++’, and ‘objective-c’. I built only
C and C++ since I don’t use Objective C. The times given
below for installation reflect this fact.

5) Save some space and do a “\rm -r stage1”.
6) At this point the compiler is built. You can test the com-

piler by having it compile itself by issuing the commands
“make stage2” and
“make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"”
followed by “make compare”. I omitted this step.

7) You now install the compiler using:
“make install CC="stage2/xgcc -Bstage2/"
CFLAGS="-g -O" LANGUAGES="LIST"” where list should
be the same as that given in step 4.

Almost Done
Congratulations! You have successfully installed gcc, etc.
Almost! If you chose to compile the g++ compiler as well,
you have a fully functional C++ compiler but without any
class libraries. These are distributed separately but may also
be picked up at prep.ai.mit.edu: /pub/gnu/libg++-
2.5.1.tar.gz. This archive is about 1.3MBs and installs in
much the same way (only faster) as gcc.

For each product reviewed, I will provide a quick
overview in the following format which I use here to
summarize gcc/g++.

gcc Summary
Name................................ gcc
Description C, C++, and Objective C compiler.
Archive Loc’n prep.ai.mit.edu:

/pub/gnu/gcc-2.5.4.tar.gz
Archive size 5984168 bytes
Approx Space to Install ... 50+MB Time to Install (Sparc-1):

4.5 hours (10 minutes interactive)
Pros Excellent compiler for 3

languages. Fast executable code
(many optimizations) Highly
Portable Conforms to K&R,
ANSI, C++ V2 and V3 Many
Extensions/Improvements Free
Software

Cons Compiles slightly slower due to
optimizations (may be made
faster by turning opt’s off.) No
free support (companies offer
support for a price if you want it).
Needs lots of space/time to install.

Next Month
That’s it for this month. Next month we will look at another
Gnu product. If you have suggestions for additional informa-
tion you would like to see in the reviews, feel free to email
me at pgraham@cs.umanitoba.ca and I will try to be
accommodating. ✒

you can get other useful work done while installing gcc.
(Assuming of course that you are doing the install on a
multiprocess operating system like Unix and not on DOS, for
example.)

Let’s go over the installation process now.
Installation

First off, all Gnu software comes in compressed tar format
(With the exception of products for the DOS environment.).
The compression is no longer done with Unix compress
(which has legal restrictions on it based on its use of the
copyrighted/patented(?) Lempel-Ziv compression algorithm.
Instead, the software is compressed using Gnu gzip and
uncompressed using gnuzip (do not confuse these with the
similarly named PC compression commands). These are
available from the Internet Gnu archives (e.g. prep.ai.mit.
edu) as, happily, uncompressed tar files.

Your first step is to ftp to prep.ai.mit.edu and cd to pub/
gnu. Select binary transfer mode and issue a “get gzip-
1.2.4.tar” command. This tar file is just a little under 800K
bytes of data. Use the unix command “tar xvf gzip-1.2.4.tar”
to extract the source code once you have copied the tar file to
your local installation directory. You can now remove the
tar’d version and use “cd” to go to the resulting directory
(probably called “gzip-1.2.4”). Follow the directions in the
README file which will consist of the basic steps outlined
above. When you are done you will have a working version
of gnuzip in an executables directory which is hopefully on
your search path.

Now you’re ready to fetch gcc. You can retrieve the
compressed tar file from gcc-2.5.4.tar.gz in the same
place you got gzip from. This file is about 6MB and extracts
to over 25MB. Thus to install gcc you will need at least
50+MB of free space (25MB for the tar file and then 25MB
for the extracted directories and files). (Egads!!!) Once you
have extracted the directories and files using tar, be sure to
get rid of the tar file itself since you will need the space for
object files during the build process.

The 7 Steps to gcc
Finally, we can do the installation. Examining the README
file that comes with the distribution we are horrified to find
that it is 1625 lines long. We regain our composure after
discovering that most of it is either notes for special machine
configurations or part of a description of how to build cross-
compilers. The basic installation consists of 6 or 7 steps as
follows:
1) Run the configure - on my machine I didn’t have to tell it

anything about the environment. It figured it all out itself
and did so without having to ask me any questions.

2) Issue the command “make LANGUAGES=c”. Don’t
worry about specifying c++, etc. here since it isn’t needed
yet.

3) Issue the command “make stage1”. This moves the result
of the build of the gcc compiler in step 2 into a sub-
directory named ‘pass1’. This version of the compiler
is then used to build the second, self-compiled, native
mode compiler for C, C++, and/or Objective C.

MUUG Lines 7 December 1993

THE FORTUNE FILE

New “Politically Correct” UNIX
By Ernest Prabhakar

Submitted By Andrew Trauzzi

CORPORATE MEMBERSHIPS

Are there other people at your office who wish to join
The Manitoba UNIX User Group?

Well now is a better time than ever before with
MUUG Corporate Memberships!

• Ten employee minimum
• Memberships are twenty dollars each
• Two members will have voting rights
• Corporate MONA access is not available, but
• Personal MONA accounts are available

For details, contact any MUUG board member.

Politically Correct UNIX
System VI Release notes

In order for UNIX to survive the rest of this decade, it must get rid
of its intimidating commands and outmoded jargon, and become
compatible with the existing standards of our day. To this end, our
technicians have come up with a new version of UNIX, System VI,
for use by the PC — that is, the “Politically Correct.”

Utilities
• “man” pages are now called “person” pages.
• Similarly, “hangman” is now the “person_executed_by_an_

oppressive_regime.”
• To avoid casting aspersions on our feline friends, the “cat”

command is now merely “domestic_quadruped.”
• To date, there has only been a UNIX command for “yes” —

reflecting the male belief that women always mean yes, even
when they say no. To address this imbalance, System VI adds a
“no” command, along with a “-f[orce]” option which will crash
the entire system if the “no” is ignored.

• The bias of the “mail” command is obvious, and it has been
replaced by the more neutral “gender” command.

• The “touch” command has been removed from the standard
distribution due to its inappropriate use by managers.

• “compress” has been replaced by the lightweight “feather”
command. Thus, old information (such as that from Dead White
European Males) should be archived via “tar” and “feather”.

• The “more” command reflects the materialistic philosophy of the
Reagan era. System VI uses the environmentally preferable
“less” command.

• The biodegradable “KleeNeX” displaces the environmentally
unfriendly “LaTeX”.

Shell Commands
• To avoid unpleasant, medieval connotations, the “kill” command

has been renamed “euthanise.”
• The “nice” command was historically used by privileged users to

give themselves priority over unprivileged ones, by telling them
to be “nice”. In System VI, the “sue” command is used by un-
privileged users to get for themselves the rights enjoyed by
privileged ones.

• “history” has been completely rewritten, and is now called
“herstory.”

• “quota” can now specify minimum as well as maximum usage,
and will be strictly enforced.

• The “abort()” function is now called “choice().”
Terminology

• From now on, “rich text” will be more accurately referred to as
“exploitive capitalist text”.

• The term “daemons” is a Judeo-Christian pejorative. Such
processes will now be known as “spiritual guides.”

• There will no longer be a invidious distinction between “dumb”
and “smart” terminals. All terminals are equally valuable.

• Traditionally, “normal video” (as opposed to “reverse video”) was
white on black. This implicitly condoned European colonialism,
particularly with respect to people of African descent. UNIX
System VI now uses “regressive video” to refer to white on
black, while “progressive video” can be any color at all over a
white background.

• For far too long, power has been concentrated in the hands of
“root” and his “wheel” oligarchy. We have instituted a dictator-
ship of the users. All system administration functions will be
handled by the People’s Committee for Democratically Organiz-
ing the System (PC-DOS).

• No longer will it be permissible for files and processes to be
“owned” by users. All files and processes will own themselves,
and decided how (or whether) to respond to requests from users.
The X Window System will hence forth be known as the NC-17
Window System.

And finally, UNIX itself will be renamed “PC” — for Procreatively
Challenged. ✒

MUUG Lines 8 December 1993

MEETINGS

Agenda
for

Tuesday, December 14, 1993, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

SIG Sideline
By Bary Finch, SIG Coordinator

Coming Up

Meeting:
Next month’s meeting is scheduled for Tuesday, January
11, at 7:30 PM. Meeting location will be the St-Boniface
Research Centre, as usual. The January meeting topic is
UNIX Security. Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you’d like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<rsch@muug.mb.ca>.

Newsletter:
If you are interested in a particular topic, let me know.
I’m sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones —
half a page to one page (400 to 1000 words) would be
fine.

Monsieur Ex has also let me know that his mail-box
has room for more of your wonderful queries again –
please submit your questions to the old guy via e-mail
to <m-ex@muug.mb.ca>. He may be old, but he’s not
ready for retirement yet!

Our last SIG meeting had the usual good turnout of around
15 people. This time we indulged in the round table format
of discussion, i.e. “talk techie”. There was no specific topic
presented.

Of course, many different topics came up through the
night. There was quite a bit of “X” based talk, with some
discussing the X11 implementation in Linux. Others got
quite involved in discussing many of the DOS X-window
packages that are available. Many places are using these
packages as a way of integrating X-terminal function into
their PC environment. People were discussing the benefits of
one package over another, and some specific problems that
they had experienced. It was a good introduction to anyone
who was new to the idea of running “X” from a PC to a
UNIX machine.

Another interesting point was that MS Windows is
starting to be written for Linux. It’s estimated it will be well
into 1994 before anything is really delivered, but it’s under
way. It won’t be a version of WABI (Windows Application
Binary Interface) from SUN, but it will get your MS Win-
dows applications going.

As for our next meeting, please note:
DECEMBER 21ST SIG MEETING IS CANCELLED

(due to it being on Christmas week)
Sort of sounds like the old joke line of “Christmas is

cancelled due to . . . ”, but quite the opposite. We didn’t get
any response from a news group posting asking for interest,
and the people that I know of will not be available that week
due to many Christmas commitments. So we will let every-
one indulge fully in the Christmas spirit(s), and skip December.

Our next meeting will then be held on Tuesday, January
18, at 7:30 p.m. We intend to have another presentation at
this meeting. No specific topic has yet been finalized, but it
will likely be from the original list of topics generated at the
first SIG meeting.

The desired topics determined were: networking,
working with users, installing LINUX, mail, x-windows, and
setting up peripherals like terminals, printers, and modems.
This all culminates in a major interest expressed in learning
how to connect to MONA to poll for mail.

So we will continue to work towards the final goal
above. If anyone is interested in being a guest speaker at a
SIG meeting on one of the listed topics, let me know. Or if
you have a specific topic of interest, let me know that too.
As usual, my email is bfinch@muug, and my work phone is
934-2723.

That’s about it for this month. I hope you all get the best
out of the Christmas season, and enjoy a Happy New Year!
We’ll see you at the January SIG meeting! ✒

The MUUG Annual Wine and Cheese Party

Held in the atrium of the St. Boniface Hospital Research
Centre (outside the lecture theatre). Don’t miss it!

