

Linux Clustering Technologies

Mark Spencer November 8, 2005

Presentation Topics

- Business Drivers
- Clustering Methods
 - High Availability
 - High Performance
- Cluster Filesystems
- Volume Managers

Business Drivers

- Service Continuation
 - example: Oil & Gas databases
 - Oracle RAC
- Uptime = \$\$
 - example: Online Sales
 - Amazon.com
- High Density Compute Farms
 - example: Medical
 - University of Calgary Faculty of Medicine

Technologies

- High Availability
 - Active / Passive
 - one node does all of the processing
 - passive node monitors active node for service failure
 - Pros:
 - Service(s) are up 99.99% of the time
 - Cons:
 - Expensive Solution
 - twice the hardware costs, with no change in performance or scalability
 - There is STILL limited downtime

Technologies

- High Availability (cont.)
 - Active / Active
 - both nodes processing service(s) requests
 - Pros:
 - 100% service availability (unless BOTH nodes fail)
 - load-balancing effect on processing
 - Cons:
 - requires N+1 nodes to achieve
 - at least 1.5 times more expensive than Active / Passive configuration

Simple Cluster Configuration

- 2 nodes
 - heartbeat connection
 - allows monitoring
 - shared storage
 - for common configs & data
 - individual network interfaces
 - allows IP Address takeover

Example of load-balanced service(s)

 Clients connect to load-balanced applications, which use shared storage back-end.

Technologies

- High Performance Computing
 - many nodes providing processing power
 - Pros:
 - cost-efficient when compared to mainframe technologies
 - balances load amongst many CPUs
 - example: Beowulf, OpenMosix
 - harnesses "idle" CPUs
 - Cons:
 - highly sensitive to network interruptions
 - requires extensive setup / configuration time

Clustering Filesystems

- Many cluster-aware services require concurrent filesystem access
 - Example: load-balanced NFS Servers
 - needs to handle multiple reads & writes to the SAME file
 - How to handle concurrency issues ?

Clustering Filesystems

- Red Hat's GFS
 - uses a lock manager to handle concurrency
- LustreFS
 - object storage device shares objects, not blocks
 - still considered highly experimental
- CODA FS
 - distributed filesystem, using concept of replication amongst nodes
 - allows disconnected access to filesystem resources

Red Hat Clustering Solutions

- Red Hat Global File System provides a fully open-source cluster file system that offers cluster-wide concurrent read-write file system access
 - Improves availability, scalability and performance
 - Recommended for medium-large configurations
 - File-level concurrency is provided by the application
 - Includes cluster logical volume manager
- Red Hat Cluster Suite provides application failover
 - Improves availability
 - Recommended for small configurations
 - Available separately; included in Red Hat

Volume Managers

- Handle the job of allocating shared storage
 - need to be cluster-aware
 - need to handle volumes for multiple nodes
- Examples include
 - Red Hat's LVM2
 - aka CLVM
 - IBM's EVMS
 - not seen much in Enterprise clients
 - cost a factor ?

Cluster LVM

- CLVM2 brings ease of administration
 - dynamically grow / shrink filesystems

Red Hat Global File System v.6.1

- New version for Red Hat Enterprise Linux 4
- Provides two major technologies
 - GFS cluster file system concurrent file system access for database, web serving, NFS file serving, HPC, etc. environments
 - CLVM cluster logical volume manager
- Distributed Lock Manager
- Data and meta-data journaling (per-node journals, clusterwide recovery)
- Maximum filesize & file system size: 16TB with 32-bit systems,
 8EB with 64-bit systems
- Supports file system expansion
- Requires shared storage
 - Supports several topologies: SCSI, SAN, iSCSI, GNBD

Red Hat GFS File Services

- Scalable: Architecture scales to hundreds of servers; supported up to 300 servers
- Robust: 120+ proven production deployments
 - Sectors: Financial Services, Automotive, Oil & Gas, EDA
 - Applications: Oracle
 9iRAC, NFS,
 Web/Application Server,
 SAP, Custom

- Technology Differentiators:
 - High Availability:
 - Multi-Journaling and Distributed Metadata
 - Multi-Path support
 - Multi-Fence
 - OmniLock Architecture
 - Manageability:
 - Quotas
 - Online re-Sizing
 - POSIX compliance
 - Performance:
 - Direct I/O
 - Data Journaling
 - Deferred Locking

Questions

